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1 Introduction

We study the following problem: how should two mobile agents move along the nodes of
a network so as to ensure that they meet or rendezvous at a node or an edge?

The problem is well studied for several settings. When the nodes of the network are
uniquely numbered, solving the rendezvous problem is easy (the two agents can move to
a node with a specific label). However even in that case the agents need enough memory
in order to remember and distinguish node labels. Symmetry in the rendezvous problem
is usually broken by using randomized algorithms or by having the mobile agents use
different deterministic algorithms. (See the surveys by Alpern [1] and [2], as well as the
book by Alpern and Gal [4]). Yu and Yung [20] prove that the rendezvous problem cannot
be solved on a general graph as long as the mobile agents use the same deterministic
algorithm. While Baston and Gal [7] mark the starting points of the agents, they still rely
on randomized algorithms or different deterministic algorithms to solve the rendezvous
problem. Anderson and Fekete [5] and Alpern and Baston [3] study the problem in two-
dimensional lattices having again the mobile agents use different strategies. Chester and
Tutuncu [8] study the problem in a labeled line while Howard [16] studies the rendezvous
problem on the interval and the circle. Han et al [15] improve lower and upper bounds for
the symmetric rendezvous value on the line.

Research has focused on the power, memory and knowledge the agents need, to ren-
dezvous in a network. In particular what is the ‘weakest’ possible condition which makes
rendezvous possible? For example Yu and Yung [20] have considered attaching unique
identifiers to the agents while Dessmark, Fraigniaud and Pelc [11] added unbounded
memory; note that having different identities allows each agent to execute a different
algorithm. Other researchers (Barriere et al [6] and Dobrev et al [12]) have given the
agents the ability to leave notes in each node they visit. De Marco et al [10] study the
rendezvous problem in arbitrary asynchronous networks for two agents which have unique
identifiers and solve the problem when an upper bound on the number of nodes of the
network is known. The problem is left open when no upper bound on the number of nodes
is known.

In another approach each agent has a stationary token placed at the initial position of
the agent. This model is much less powerful than distinct identities or than the ability to
write in every node. Assuming that the agents have enough memory, the tokens can be
used to break symmetries. This is the approach introduced in [18] and studied in Kranakis
et al [17], Flocchini et al [13], Czyzowicz et al [9] and Gasieniec et al [14] for the ring
topology. In particular the authors proved in [17] that two agents with one unmovable
token each in a synchronous, n-node oriented ring need at least Ω(log log n) memory in
order to do rendezvous with detection. They also proved that if the token is movable then
rendezvous without detection is possible with constant memory.

We keep here the same model as in [9, 13, 14, 17, 18] with the exception of the underlying
graph topology. Specifically, we study here the following scenario: there are two identical
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anonymous agents running the same deterministic algorithm in an anonymous and syn-
chronous oriented torus. As this is one of the weakest models which has appeared in the
literature we would like to study more general topologies and the selection of the torus is
a step towards arbitrary topologies. In particular we are interested in answering the fol-
lowing questions. What memory do the agents need to solve rendezvous using unmovable
tokens? What is the situation if they can move the tokens? What is the tradeoff between
memory and the number of tokens?

1.1 Model and terminology

Our model consists of two anonymous and identical mobile agents that are placed in an
anonymous, synchronous and oriented torus. The torus consists of n rings and each of
these rings consists of m nodes. Since the torus is oriented we can say that it consists
of n vertical rings. A horizontal ring of the torus consists of n nodes while a vertical
ring consists of m nodes. We call such a torus a n × m torus. The mobile agents share
a common orientation of the torus, i.e., they agree on any direction (clockwise vertical
or horizontal). Each mobile agent owns a number of identical tokens, i.e., all tokens are
indistinguishable. A token or an agent at a given node is visible to all agents on the same
node, but is not visible to any other agents. The agents follow the same deterministic
algorithm and begin execution at the same time and being at the same initial state.

At any single time unit, the mobile agent occupies a node of the torus and may 1) stay
there or move to an adjacent node, 2) detect the presence of one or more tokens at
the node it is occupying and 3) release/take one or more tokens to/from the node it is
occupying. We call a token movable if it can be moved by any mobile agent to any node
of the network, otherwise we call the token unmovable in the sense that, once released, it
can occupy only the node in which it has been released.

More formally we consider a mobile agent as a finite Moore automaton4 A = (X, Y,S, δ, λ, S0),
where X ⊆ D×Cv×CMA, Y ⊆ D×{drop, take}, S is a set of σ ≥ 2 states among which
there is a specified state S0 called the initial state, δ : S × X → S, and λ : S → Y . D
is the set of possible directions that an agent could follow in the torus. Since the torus is
oriented, the direction port labels are globally consistent. We assume labels up, down, left,
right. Therefore D = {up, down, left, right, stay} (stay represents the situation where
the agent does not move). Cv = {agent, token, empty} is the set of possible configurations
of a node (if there is an agent and a token in a node then its configuration is agent).
Finally, CMA = {token, no − token} is the set of possible configurations of the agent
according to whether it carries a token or not.

Initially the agent is at some node u0 in the initial state S0 ∈ S. S0 determines an action
(drop token or nothing) and a direction from which the agent leaves u0, λ(S0) ∈ Y . When
incoming to a node v, the behavior of the agent is as follows. It reads the direction i of

4 The first known algorithm designed for graph exploration by a mobile agent, modeled as a finite automaton,
was introduced by Shannon [19] in 1951.
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the port through which it entered v, the configuration cv ∈ Cv of node v (i.e., whether
there is a token or an agent in v) and of course the configuration cMA ∈ CMA of the agent
itself (i.e., whether the agent carries a token or not). The triple (i, cv, cMA) ∈ X is an
input symbol that causes the transition from state S to state S ′ = δ(S, (i, cv, cMA)). S ′

determines an action (such as release or take a token or nothing) and a port direction
λ(S ′), from which the agent leaves v. The agent continues moving in this way, possibly
infinitely.

We assume that the memory required by an agent is at least proportional to the number
of bits required to encode its states which we take to be Θ(log(|S|)) bits. The agents know
that there are two of them and they also know the number of tokens they have. Memory
permitting, an agent can count the number of nodes between tokens, or the total number
of nodes of the torus, etc. Since the agents are identical they face the same limitations
on their knowledge of the network. In what follows, we assume that, unless explicitly
stated, the agents have no knowledge about the number of nodes of the torus or any other
parameter of the network, apart from its dimension. The agents start at the same initial
state S0 and at the same time. We assume that crossing a link takes one time unit.

Rendezvous occurs when the agents either meet on a network node or simultaneously
cross the same network link while moving in opposite directions. We say that the agents
can solve Rendezvous with Detection (RVD) in a torus, if no matter what are the initial
positions of the agents, after a finite time either they rendezvous or they stop, declar-
ing that rendezvous is impossible. We say that the agents can solve Rendezvous without
Detection (RV) in a torus, if they meet whenever rendezvous is possible. In this case, if
rendezvous is impossible they may move forever on the torus.

The distance between two nodes (x1, x2) and (y1, y2) on a 2-dimensional torus n × m,
is a 2-dimensional vector (d1, d2) where d1 = min{|x1 − y1|, (n − |x1 − y1|)} and d2 =
min{|x2− y2|, (m−|x2− y2|)}. An example of two agents in a torus is shown in Figure 1.

Theorem 1. Consider two identical agents placed in a 2-dimensional oriented torus (n×
m), so that their distance is either (n/2, 0) (with n even) or (0,m/2) (with m even) or
(n/2,m/2) (with n,m even). The agents start at the same initial state and at the same
time. Then, no matter how many tokens (movable or unmovable) or how much memory
the agents have, it is impossible for the agents to rendezvous at a node or an edge.

Proof. Let D be the initial distance of the agents, with D = (n/2, 0) or D = (0,m/2) or
D = (n/2,m/2). Since the agents start at the same state S0 and at the same time, as long
as they do not release tokens, they enter simultaneously the same state Sτ at any time
τ , moving in the same direction, thus maintaining their initial distance. Hence, if they
release a token, they do it at the same time τk, being at the same state Sk and having
the initial distance D. Thus the distance of the released tokens is also D, i.e. for any
token TA released by agent A, there is a token TB released by agent B at distance D. At
any time τ ′ > τk, as long as the agents do not meet tokens while they are moving in the
same direction, they again simultaneously enter the same state Sτ ′ maintaining distance
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Fig. 1. Two agents in a 15× 8 (2−dimensional) torus. Agent A has coordinates (2, 2). Agent B has coordinates
(10, 5). Their distance is d(A,B) = (min{|A1−B1|, (n−|A1−B1|)},min{|A2−B2|, (m−|A2−B2|)}) = (min{|2−
10|, (15− |2− 10|)},min{|2− 5|, (8− |2− 5|)}) = (min{8, 7},min{3, 5}) = (7, 3).

D. Now suppose that one of the agents, say A, meets a token while moving. Consider the
following two cases:

i) Suppose that A meets token TA which had been released by A earlier (we remind
here that all tokens are indistinguishable and hence, agent A is not aware that TA has
been released by him). In this case, since the agents were moving identically maintaining
distance D, agent B must meet token TB (which had been released by B earlier) at exactly
the same time.

ii) Suppose that A meets token TB (which had been released by B earlier) at time τl. This
means that at time τl, agent A is at distance D from token TA. Since up to that time τl,
the agents were moving identically (i.e., in the same direction, entering the same states
and covering the same distance), agent B is at distance D from token TB. But this is the
position where token TA lies. Hence, at time τl, both agents meet tokens.

In other words they are always simultaneously entering the same states, their configuration
is the same (they both carry the same number of tokens) while the configuration of the
node they occupy is always the same (no tokens or the same number of tokens). Therefore,
since they act identically, they maintain their distance forever. 2

Theorem 1 is a generalization of Theorem 1 in [17] which states that it is impossible for
two agents equipped with one unmovable token each, to rendezvous in a ring with n nodes
if their initial distance is n/2, where n is even.

Given two mobile agents initially situated at two nodes of a n × m torus, we formally
define the two following problems.
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Definition 1. We call rendezvous with detection (RVD) the problem in which the task
for the agents is either to meet each other at a node or an edge whenever this is possible
(i.e., if their distance is not (n/2, 0) or (0,m/2) or (n/2,m/2)), and otherwise detect the
impossibility of meeting each other and stop moving.

We say that an algorithm A solves RVD (or A is an RVD algorithm) if: a) A leads the
agents to rendezvous at a node or an edge after a finite time, when their initial distance
is not (n/2, 0) or (0,m/2) or (n/2,m/2) and b) A halts after a finite number of steps and
the agents declare that rendezvous is impossible, when their initial distance is (n/2, 0) or
(0,m/2) or (n/2,m/2).

Definition 2. We call rendezvous without detection or simply rendezvous (RV) the prob-
lem in which the task for the two agents is to meet each other at a node or an edge when
their initial distance is not (n/2, 0) or (0,m/2) or (n/2,m/2).

Therefore we say that an algorithm A solves RV (or A is an RV algorithm) if the agents
rendezvous at a node or an edge when their initial distance is not (n/2, 0) or (0,m/2) or
(n/2,m/2). Otherwise, A may run forever.

The input in any of those algorithms is the number of agents (which are anonymous,
identical, and start at the same initial state), the number of tokens (which are indistin-
guishable and may be movable or unmovable) and the information that the underlying
graph topology is an anonymous, synchronous and oriented torus. In other words, an RV
or RVD algorithm should solve RV or RVD problem in any anonymous, synchronous and
oriented torus. In one of our algorithms we add to the input the information that the
torus is square (same number of nodes horizontally and vertically).

We assume that at any single time unit an agent can traverse one edge of the network or
wait at a node (we assume that taking or leaving a token can be done instantly). For a
given torus G and starting positions s, s′ of the agents we define as cost CTRVD(A,G, s, s′)
of an RVD algorithm A, the minimum time (number of steps plus waiting time of an agent)
needed to rendezvous (or to decide that rendezvous is impossible if this is the case for
s, s′). The cost CTRV (A′, G, s, s′) of an RV algorithm A′ is defined only for non-symmetrical
positions s, s′ and is the minimum time needed to rendezvous. The time complexity of
the RVD algorithm A is the maximum cost of A overall pairs (s, s′), TRVD(A,G) =
max
(s,s′)
CTRVD(A,G, s, s′). The time complexity of the RV algorithm A′ is the maximum cost

of A′ overall non-symmetrical pairs (s, s′), TRV (A′, G) = max
(s,s′)
CTRV (A′, G, s, s′).

1.2 Our results

In the study of the rendezvous problem this paper shows that there is a striking compu-
tational difference between one and more tokens. Specifically, we show that two agents
with:

6



1. a constant number of unmovable tokens each cannot rendezvous in a n × n torus if
they have o(log n) memory.

2. one movable token each cannot rendezvous in a n × n torus if they have o(log n)
memory.

3. one unmovable token each can solve rendezvous with detection in a n × m torus as
long as they have O(log n+ logm) memory.

4. two movable tokens each and constant memory can solve rendezvous (respectively,
rendezvous with detection) in an arbitrary n×m (respectively, n× n) torus.

5. three movable tokens each and constant memory can solve rendezvous with detection
in an arbitrary n×m torus.

This is the first publication in the literature that studies tradeoffs between the number of
tokens, memory and knowledge the agents need in order to meet in a torus.

1.3 Outline of the paper

In Section 2 we first give some preliminary results concerning the possible ways in which
an agent can move in a torus using either no tokens or a constant number of unmovable
tokens. Then we prove that rendezvous without detection in a n×n torus cannot be solved
by two agents with one movable token each, or with a constant number of unmovable
tokens unless their memory is Ω(log n) bits.

In Section 3 we first give an algorithm for rendezvous with detection in an arbitrary n×m
torus where the agents use one unmovable token and O(log n+ logm) memory each. We
then give an algorithm for rendezvous with detection in a n×n torus where the agents use
two movable tokens and constant memory each. Next we give an algorithm for rendezvous
without detection in an arbitrary n ×m torus where the agents use two movable tokens
and constant memory each. We prove that when m and n have a specific relation, this
algorithm solves rendezvous with detection. Finally we give an algorithm for rendezvous
with detection in an arbitrary n×m torus where the agents use three movable tokens and
constant memory.

In Section 4 we discuss the results and state some open problems.

2 Memory lower bounds of rendezvous

In this section we will prove lower bounds for the memory the agents need in order to
rendezvous. We first prove some technical lemmas which will use in the main theorems.

2.1 Preliminary results

We prove here some lemmas about one mobile agent in a n×n oriented torus. In particular
we show how many nodes one agent can visit in the torus when it carries no tokens (Lemma
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1), or carries one unmovable token (Lemma 2), or carries a constant number of identical
unmovable tokens (Theorem 2).

Lemma 1. Consider one mobile agent with σ ≥ 2 states and no tokens. We can always
(for any configuration of the automaton, i.e., states and transition function) select an
n × n oriented torus, where n > σ so that no matter what is the starting position of the
agent, it cannot visit all nodes of the torus. In fact, the agent will visit at most n(σ−1)+1
nodes.

Proof. If we select an oriented n × n torus, where n > σ then the agent has to repeat
a state at some point (before visiting all nodes). Let S be the first state repeated. Let
v = (vx, vy) be the node where the agent is located when S is encountered for the first
time and v′ be the node where the agent is located when S is repeated for the first time.
We call px, py the horizontal and vertical distance respectively between v and v′. Since S
is the first state repeated, the total number of nodes visited by the agent until it repeats
S for the first time is at most σ+1. In particular, the total number of nodes visited by the
agent after the moment that first encountered S and until it enters S again (i.e., between
visiting nodes v and v′ without counting v) is at most σ − 1 (notice that the initial state
S0 occurs only in the beginning).

Once the agent is again at state S it has to repeat the same trajectory (px, py) and visiting
again at most σ − 1 new nodes until it encounters S again. Label the coordinates of the
nodes of the torus 0, . . . , n− 1 horizontally and vertically. If vx, vy are the coordinates of
node v, then after n repetitions of state S, the position of the agent is:

(vx + npx) mod n = vx

(vy + npy) mod n = vy

This means that the agent is again at node v and state S. The agent has to continue
moving visiting exactly the same nodes. Up to that moment, the agent has visited at
most (σ + 1) + (n− 1)(σ − 1)− 1 = n(σ − 1) + 1 < n2 nodes. 2

Notice that in general it suffices to select a n×m torus with n = apx and m = apy, where
a is such that apx > σ and apy > σ. After a repetitions of the first repeated state S the
agent will be again located at the same node entering state S. Therefore it will visit at
most (σ + 1) + (a− 1)(σ − 1)− 1 = a(σ − 1) + 1 < mn nodes.

Lemma 2. Consider one mobile agent with σ ≥ 2 states and one unmovable token. We
can always (for any configuration of the automaton, i.e., states and transition function)
select an oriented n×n torus, where n > σ2 so that no matter what is the starting position
of the agent, it cannot visit all nodes of the torus. In fact, the agent will visit at most
σ + (σ − 1)2(n+ 1) < n2 nodes.

8



Proof. We select an oriented n × n torus, where n > σ2. As long as the agent does not
release the token, Lemma 1 holds and the agent visits at most n(σ − 1) + 1 < n2 nodes.

Suppose that the agent releases the token at some point. This point has to be before
repeating a state (otherwise it will never take this decision since after repeating a state,
everything is being repeated). Hence up to that point it has visited up to σ nodes. After
releasing the token, say at node vt, the agent moves without carrying any tokens. Take
the first state S which is repeated after dropping the token. Let vS be the node where the
agent is located when S is encountered for the first time after dropping the token and let
v′S be the node where the agent is located when S is repeated for the first time. After the
release of the token the agent has been visited at most σ− 1 new nodes (notice that state
S0 occurs only in the beginning) until it repeats S for the first time (at node v′S). In any
phase between two appearances of state S the agent visits at most σ − 1 new nodes.

Suppose that after at most n repetitions of S, the agent does not meet its token. But then,
following exactly the same reasoning as in the previous lemma, the agent will again be
located at node vS having state S. Up to that point it has visited at most σ+(σ−1)n−1
nodes. After that point, the agent continues moving visiting exactly the same nodes.

Suppose now that at some point, the agent sees again its token at node vt. Up to that point,
it has visited at most (σ−1)(n+1) nodes. When it meets its token at vt it could change its
orbit visiting another (σ−1)(n+1) nodes. After at most σ times visiting vt it has to repeat
a state. In other words, it could enter at most σ−1 different states (thus changing its orbit)
when it meets its token. Therefore it will visit a total of at most σ+ (σ−1)2(n+ 1) nodes
and after that it visits exactly the same nodes. Hence if we select the size of the torus to
be n > σ2, then the agent will visit at most σ+(σ−1)2(n+1) < n2+2n(1−σ)+1−σ < n2

nodes. 2

For the case of more than one unmovable tokens, we can apply again the arguments used
in Lemmas 1, 2. Observe that in this case, after the first token has been released, the
agent cannot release a new token at a distance more than σ nodes away from another
token. Therefore we get:

Theorem 2. Consider one mobile agent with σ states and a constant number k of identi-
cal unmovable tokens. We can always (for any configuration of the automaton, i.e., states
and transition function) select a n × n oriented torus, where n > kσ2 so that no matter
what is the starting position of the agent, it cannot visit all nodes of the torus. In fact,
the agent will visit at most σ + k(σ − 1)2(n+ 1) < n2 nodes.

Proof. Following the same reasoning as in the previous lemma (Lemma 2), the agent
should release the first token after visiting at most σ nodes. Then it could visit at most
(σ − 1)2(n + 1) new nodes and release the second token at a distance at most σ nodes
away from the first token and so on. After releasing the k−th token, it could visit at
most (σ− 1)2(n+ 1) new nodes before it repeats everything (passing from already visited
nodes). Thus it could visit at most σ + k(σ − 1)2(n+ 1) < n2 nodes. 2
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We will also need the following technical lemma:

Lemma 3. Let A be an agent with σ states and a constant number k of identical unmov-
able tokens in a n × n oriented torus, where n > kσ2 and let v be a node in that torus.
There are at most σ + k(σ − 1)2(n + 1) < n2 different starting nodes that we could have
initially placed A so that node v is always visited by A.

Proof. Fix a node v and suppose that there are more than σ + k(σ − 1)2(n+ 1) different
starting nodes where A could be initially placed and still visits v. Since the starting
nodes are different, it means that the distances covered by A to reach v are pairwise
different. But this means that A can start from a node s and visit nodes at more than
σ + k(σ − 1)2(n + 1) different distances (i.e., different nodes) which in view of Theorem
2 is impossible. 2

2.2 An Ω(logn) memory lower bound for rendezvous using one token

We first show that two mobile agents with σ states and one unmovable token each cannot
rendezvous in an n× n oriented torus, where n > 2σ2.

Lemma 4. Consider two mobile agents with σ states and one unmovable token each. The
tokens are identical. We can always (for any configuration of the automatons, i.e., states
and transition function) place the agents in an n × n oriented torus, where n > 2σ2 so
that they cannot rendezvous.

Proof. If we place the agents at any distance, as long as they do not release their token
they maintain their distance since they move in exactly the same way.

Suppose that at some point they release their token and they move.

a) Consider the case that they see a token before they repeat a state. The total number
of nodes visited before a state is repeated for the first time is at most σ + 1. Therefore
we can initially place the agents at such a distance (greater than σ+ 1 in any dimension)
so that if they see a token before repeating a state then this token is their own token.
Since they move in exactly the same way, they see their tokens at the same time being
at the same state and they continue moving identically. Thus they maintain their initial
distance.

b) Consider the case in which they repeat a state without having seen a token. Take the
first state S that they repeat. Suppose that when first are at state S, at that moment
they are at nodes v1, v2.

If n is the size of the torus, consider what happens after at most n repetitions of S:

i) either both of the agents do not see a token, or
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A's token B's token

Fig. 2. Two agents with 1 unmovable token each cannot see each other’s token.

ii) at least one of the agents sees a token

In subcase i) Lemma 1 holds and hence they will eventually be located again at nodes v1,
v2 having state S. They continue moving identically, following the same routes as before,
therefore maintaining their initial distance for ever. Suppose now subcase ii), i.e. at least
one of the agents sees a token before the n repetitions. We prove that we can initially
place the agents so that they never meet the other’s token.

We place the first agent A in a node. If A can meet only its token, then by Lemma 2, the
agent would visit at most σ+(σ−1)2(n+1) nodes before it repeats everything. We prove
that we can initially choose a node to place the other agent B so that anyone’s token is
out of reach of the other:

We need to place the second agent B so that

– it releases its token TB at a node different from at most σ + (σ − 1)2(n + 1) nodes
visited by the first agent A and

– to avoid its visiting the node where the first agent A released its token TA

We can place the second agent B at a starting node out of at least n2−(σ+(σ−1)2(n+1))
(taking n > 2σ2) so that B’s token is out of reach of A. Moreover, by Lemma 3 only
σ + (σ − 1)2(n+ 1) starting nodes could lead agent B to meet A’s token. Thus there are
at least n2 − 2(σ + (σ − 1)2(n+ 1)) starting nodes that satisfy the above property.

Therefore if we choose the size of the torus n > 2σ2, then we can place the agents so that
if they meet a token it is always their token. Since until then they move identically, they
always meet their token at the same time being at the same state and continue moving
identically. Hence they maintain their initial distance for ever. The situation has been
illustrated in Figure 2 (orbits of agent A have been drawn with solid lines while orbits of
agent B have been drawn with dashed lines). 2
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Notice that in the previous scenario, where the two agents cannot move the tokens, there
are still unvisited nodes (from the same agent) in the torus. In fact we proved Lemma 4
by describing a way to ‘hide’ token TA in a node not visited by agent B and token TB in
a node not visited by agent A.

Definition 3. If there are two starting nodes s, s′ for the agents A and B so that agent
A drops its token TA in a node not visited by agent B and agent B drops its token TB in
a node not visited by agent A then we say that s, s′ satisfy property π.

If the agents could move the tokens, then it is easy to think of an algorithm where all
nodes of any torus are visited by the same agent. For example consider the following
algorithm for two agents with one movable token each:

- 1: release the token at the starting node;

- 2: go right counting tokens until you meet the second token;

- 3: move the token down;

- 4: repeat from step 2;

Nevertheless in the following scenario where the agents can move tokens we again show
that we can place the agents in a way that they could meet only their own token. To
achieve this we place the agents so that in a phase which starts when the agents move
their tokens, up to the moment when they move their tokens again they do not meet each
other’s token.

Lemma 5. Consider two mobile agents with σ states and one movable token each. The
tokens are identical. We can always (for any configuration of the automatons, i.e., states
and transition function) place the agents in an n × n oriented torus, where n > 2σ2 so
that they cannot rendezvous.

Proof. In view of Lemma 4, as long as n > 2σ2 we can initially place the agents so that
if they see a token, it is their own token (up to the moment that they decide to move it).
Suppose that at some point they decide to move their token. Since the agents are identical
and start at the same state, they will visit their own token and take the decision to move
it simultaneously. Since, up to that point, they have maintained their initial distance,
they will again place their tokens maintaining the initial distance and their new starting
positions also have the same distance as before and thus they continue to satisfy property
π. Therefore they will never meet each other. 2

This implies the following theorem:

Theorem 3. Two agents with one movable token each, need at least Ω(log n) memory to
solve the RV problem in a n× n oriented torus.
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Proof. Suppose that the agents have a memory of r bits. Hence they can have at most
σ = 2r states. By Lemma 5 as long as n > 2σ2 the agents cannot rendezvous. Hence, the
agents need at least r = Ω(log n) memory to rendezvous. 2

2.3 An Ω(logn) memory lower bound for rendezvous using O(1) unmovable
tokens

We end this section by showing that two mobile agents carrying a constant number of
unmovable tokens cannot rendezvous in a n× n oriented torus unless they have Ω(log n)
memory.

Lemma 6. Consider two mobile agents with σ states and a constant number of k un-
movable tokens each. All tokens are identical. We can always (for any configuration of
the automatons, i.e., states and transition function) place the agents in an n×n oriented
torus, where n > 2k2σ2 so that they cannot rendezvous.

Proof. Take a n × n oriented torus, where n > 2k2σ2 and place agent B at a start-
ing node s(B). If agent B was alone in the torus would release its tokens at nodes
T1(B), T2(B), . . . , Tk(B). According to Lemma 3, there are at least n2−(σ+k(σ−1)2(n+
1)) starting nodes at which we can place agent A so that A does not visit node T1(B).
Among these starting nodes (applying again Lemma 3) there are at most σ+k(σ−1)2(n+1)
nodes that would lead agent A to token T2(B), another at most σ + k(σ − 1)2(n + 1)
nodes that would lead agent A to token T3(B) and so on. Therefore there are at least
n2 − k(σ + k(σ − 1)2(n + 1)) starting nodes at which we can place agent A so that A
does not visit any of the T1(B), T2(B), . . . , Tk(B) nodes. We still need to place agent A
at a starting node s(A) so that A releases its tokens at nodes T1(A), T2(A), . . . , Tk(A) not
visited by agent B.

Notice that an agent can decide to release a new token at a distance at most σ from a pre-
viously released token (an agent cannot count more than σ before it repeats a state). Since
n > 2k2σ2 for every two different starting nodes s(A) and s′(A), agent A would release its
tokens to nodes T1(A), T2(A), . . . , Tk(A) and T ′1(A), T ′2(A), . . . , T ′k(A) respectively, where
Ti(A) 6= T ′i (A), 1 ≤ i ≤ k.

Since in view of Theorem 2 agent B can visit at most σ + k(σ − 1)2(n + 1) nodes (if
B was alone in the torus), there are at most σ + k(σ − 1)2(n + 1) starting nodes for
A for which A would place its first token at a node visited by agent B, another at most
σ+k(σ−1)2(n+1) starting nodes for A for which A would place its second token at a node
visited by agent B, and so on. Hence we need to exclude another k(σ+ k(σ− 1)2(n+ 1))
starting nodes for agent A. Thus we have left with n2 − 2k(σ + k(σ− 1)2(n+ 1)) > σk2n
(when n > 2k2σ2) starting nodes at which we can place agent A so that A does not
visit any of the T1(B), T2(B), . . . , Tk(B) nodes and agent B does not visit any of the
T1(A), T2(A), . . . , Tk(A) nodes. Hence agents A,B may visit only their own tokens at the
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same time and being at the same states and therefore they maintain their initial distance
forever. 2

This implies the following theorem:

Theorem 4. Two agents with a constant number of unmovable tokens need at least
Ω(log n) memory to solve RV problem in a n× n oriented torus.

3 Upper Bounds

In the previous section we proved that rendezvous without detection is impossible even in
a n× n oriented torus when the agents have one movable token or a constant number of
unmovable tokens and o(log n) memory each. These results imply the infeasibility of the
RV problem (and of course RVD) in an arbitrary n ×m oriented torus when the agents
have one token and o(log n+ logm) memory each.

In this section we investigate and prove that O(log n + logm) memory is enough for the
agents equipped with one unmovable token each, in order to achieve rendezvous with
detection in an arbitrary n × m oriented torus. Therefore both RV and RVD problems
require Θ(log n + logm) memory in an arbitrary n ×m oriented torus when the agents
have one (movable or unmovable) token each.

We further investigate the situation when the agents have two movable tokens and con-
stant memory each and we show that in this case RVD can be solved in a n× n oriented
torus and RV can be solved in an arbitrary n×m oriented torus.

Finally we show that RVD can be solved in an arbitrary n×m oriented torus when the
agents have three movable tokens and constant memory each.

3.1 Rendezvous with Detection (RVD) in a n ×m torus using one
unmovable token and O(logn+ logm) memory

We describe an algorithm which solves the RVD problem of two agents equipped with
one unmovable token and O(log n + logm) memory each in any n × m oriented torus.
We remind the reader that the agents do not know n and m but as we will see they can
use their memory to calculate them. Below is a high-level description of the algorithm
(Algorithm 1).

First the agent (both agents run the same algorithm) moves in the initial horizontal ring;
it releases its token and counts steps until it meets a token twice. If its counters (measuring
intertoken distances) differ, then rendezvous can be arranged. Otherwise it does the same
in the initial vertical ring. If it does not meet the other agent then it searches one by
one the horizontal rings of the torus counting its steps. If it meets a token while going
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down passing from one horizontal ring to the other then it declares that rendezvous is
impossible. Otherwise, if it meets a token while going right in a horizontal ring (which
means that the agents must have started in different rings), then: If at least one of its
counters counting horizontal or vertical distances from its token is different than n/2 or
m/2 respectively, then rendezvous can be arranged. Otherwise it stops and declares that
rendezvous is impossible.

Algorithm 1 Algorithm for RVD in a n×m oriented torus with 1 unmovable token and
O(log n+ logm) memory
1: SameRing
2: DifRing

As Algorithm 1 suggests, the agents first execute Procedure SameRing. If they do not
meet each other then either they must have started in symmetrical positions in the same
ring or they must have started in different rings. In any of those cases they execute
Procedure DifRing. Their exploration finishes after at most O(nm) time, while they need
O(log n+ logm) memory for counting.

Procedure SameRing

1: leave your token down
2: go right and count steps until you see a token
3: c1 ←this number of steps
4: go right and count steps until you see a token
5: c2 ←this number of steps
6: if c2 6= c1 then
7: Rendezvous(horizontal, c1, c2)
8: else
9: go down and count steps until you see a token

10: c3 ←this number of steps
11: go down and count steps until you see a token
12: c4 ←this number of steps.
13: if c4 6= c3 then
14: Rendezvous(vertical, c3, c4)
15: end if
16: end if

Lemma 7. If the agents are located on the same ring of a n×m oriented torus in non-
symmetrical positions then Procedure SameRing will lead them to rendezvous.

Proof. After c1 + c2 steps the agents see their token. So they are again located at their
starting positions. If c1 6= c2, this means that the agents started in the same horizontal
ring. They execute Procedure Rendezvous on the horizontal ring and rendezvous. If c2 = c1
then the agents must have started in the same vertical ring. After c3 + c4 steps down they
meet their token on the vertical ring with c3 6= c4. They execute Procedure Rendezvous

on the vertical ring and rendezvous. 2
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Procedure Rendezvous(ring, ct, ck)

1: if ring = horizontal then
2: if ck > ct then
3: go right
4: else
5: go left
6: end if
7: end if
8: if ring = vertical then
9: if ck > ct then

10: go down
11: else
12: go up
13: end if
14: end if

In view of Lemma 7, if after executing Procedure SameRing the agents do not meet each
other, then either they have started in the same ring in symmetrical positions or they
have started in different rings. In any such case, it must hold c1 = c2 and c3 = c4.

Procedure DifRing

1: repeat
2: go down to the next horizontal ring
3: repeat
4: go right
5: c5 ←the number of steps right
6: until (c5 = 2c1) OR (you meet a token)
7: until you meet a token
8: c6 ←the number of rings down
9: if (you have met a token while going down) then

10: stop and declare rendezvous impossible
11: else
12: if c6 6= c3/2 then
13: Rendezvous2(c6, c3/2)
14: else
15: if c5 6= c1/2 then
16: Rendezvous2(c5, c1/2)
17: else
18: stop and declare rendezvous impossible
19: end if
20: end if
21: end if

Lemma 8. If the agents are located on the same ring on symmetrical positions or in
different rings of an oriented n×m torus then Procedure DifRing is a RVD algorithm.

Proof. The agents explore one by one the other horizontal rings, first going down and then
at most 2c1 steps to the right. If they first find a token while going down (passing from one
horizontal ring to the next), then this token it is either their token (which means that they
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Procedure Rendezvous2(ct, ck)

1: if ct < ck then
2: reverse horizontal direction and go c5 horizontally and then vertically until you meet your token and wait
3: end if
4: if ct > ck then
5: wait
6: end if

A's token B's token

Fig. 3. Two agents with O(logn + logm) memory and one unmovable token each.

have started in the same horizontal ring) or the other’s token (which means that they have
started in the same vertical ring). In either of these cases they declare that rendezvous is
impossible. If they first find a token while going right in a horizontal ring then, having
counted the distance to the right (c5) and down (c6) between their starting position and
that token, if c5 6= c1/2 or c6 6= c3/2 they can easily break symmetries following Procedure
Rendezvous2 and rendezvous. Otherwise (when c5 = c1/2 and c6 = c3/2) they declare
that rendezvous is impossible which in view of Theorem 1 is correct. 2

An example has been illustrated in Figure 3. An agent needs O(log n+ logm) memory to
execute Algorithm 1 since it needs to store only a constant number of counters with values
up to n and m. Algorithm 1 together with Lemmas 7, 8 imply the following theorem.

Theorem 5. The Rendezvous with Detection problem on an oriented n×m torus can be
solved by two agents using one unmovable token and O(log n + logm) memory each, in
time O(nm).

3.2 Rendezvous in an oriented n×m torus using two movable tokens and
constant memory

In this subsection we first give an algorithm which solves the RVD problem in any square
anonymous, synchronous and oriented torus. In other words, in this case, the agents know
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start

Fig. 4. An agent executing Procedure FindTokenHor

that the torus has the same number of nodes horizontally and vertically but they do not
know this number. We then give an algorithm which solves the RV problem in any n×m
anonymous, synchronous and oriented torus.

Let us first define and analyze a bunch of procedures which will be used in our algorithms.
We start with Procedure HorScan.

Procedure HorScan

1: repeat
2: go down, right, up
3: until you meet a token

In this procedure the agent stops immediately after it meets a token. So for example, if it
executes Procedure HorScan and then, after it goes right, it meets a token then it stops
immediately; it does not go up.

We also use Procedure FindTokenHor:

Procedure FindTokenHor

1: repeat
2: HorScan
3: if you meet token up then
4: HorScan
5: go one step down and move a token there
6: end if
7: until you meet a token down or right

An agent following Procedure FindTokenHor, scans one by one the horizontal rings of the
torus as in Figure 4 until it meets a token while moving down or right. Below we explain
Procedure FindTokenHor and prove some of its properties.
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Let the agents release both tokens at their starting positions and execute Procedure
FindTokenHor. During the first execution of HorScan (step 2 of Procedure FindTokenHor),
an agent has to meet a token for the first time, either after it moved down in the first step,
or after it moved up or right at a later step (it can not meet a token while going down at
a later step of HorScan since it would have met the token while going right earlier).

If it meets a token while moving up, then it has met either its own tokens or the
other’s tokens. However, if it executes Procedure HorScan again (step 4 of Procedure
FindTokenHor), then no matter what was the case, it is easy to see that the first token it
meets now is at its starting node and it meets it after it moved up. Furthermore in this
case it is sure that the down horizontal ring had no tokens. In other words, if an agent
meets a token after it moved up, it has met either its own tokens (which means that the
agents did not start at the same horizontal ring) or the other’s tokens (which means that
the agents started at the same horizontal ring). Now the agent moves one of its tokens,
one step down (step 5 of Procedure FindTokenHor) and repeats from step 1. Notice that
an agent never moves all tokens from its starting node and always moves a token along
the vertical ring defined by its starting node. Let us call first (T1) the token that stays at
the starting node and second (T2) the token that the agent moves.

Suppose that at some point the agent exits the loop at step 7 by meeting a token while it
goes down. This token is either its first token (which means that the agents have started
in the same horizontal ring) or the other’s first token (which means that the agents have
started in the same vertical ring). Hence, in both cases, meeting a token while going down,
means that the agents have started in the same ring.

If the agent exits the loop at step 7 by meeting a token while going right then it is clear
that it is the other’s first token and that the two agents have started in different horizontal
and vertical rings.

Therefore the agent exits Procedure FindTokenHor knowing that it has started either in
the same ring with the other agent (if it exited the loop at step 7 meeting a token after
it moved down) or in different horizontal and vertical rings (if it exited the loop at step
7 meeting a token after it moved right).

We illustrate the above situation by giving a few examples.

Example 1: Suppose the agents start at the same horizontal ring and they release their
tokens at the same time as in Figure 5(a). When they execute for the first time Procedure
HorScan (at step 2 of Procedure FindTokenHor), agent A meets B’s tokens while moving
up and agent B meets A’s tokens while moving up (perhaps at different times). Next they
execute again Procedure HorScan (at step 4 of Procedure FindTokenHor) and they meet
their own tokens while moving up (at the same time since both agents covered the same
distance). Then they move a token down (as in Figure 5(b)) and repeat from step 1 of
Procedure FindTokenHor. Now agent A meets B’s second token (T2(B)) while moving up
and B meets A’s second token (T2(A)) while moving up (executing Procedure HorScan

at step 2 of Procedure FindTokenHor). Then they execute Procedure HorScan at step
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A B T1(A) T1(B)
T2(A) T2(B)

(a) (b)

T1(A) T1(B)
T2(A) T2(B)

T1(A) T1(B)T2(A) T2(B)

(c) (d)

Fig. 5. Two agents A and B starting at the same horizontal ring: (a) Each agent releases both its tokens at its
starting node. (b) Each agent moves one of its tokens, down. (c) Each agent repeatedly moves the same token T2

down. (d) Eventually each agent moves its (T2) token one horizontal ring above the initial horizontal ring.

4 of Procedure FindTokenHor and they meet their own second tokens while moving up
at the same time. Next they move their second tokens one step down as in Figure 5(c)
and repeat from step 1. At some point they will move their second token as in Figure
5(d) (one horizontal ring above the initial ring) and then they will move down (executing
Procedure HorScan at step 2 of Procedure FindTokenHor), meeting (at the same time)
a token and thus exiting the loop at step 7. Hence they correctly decide that they have
started at the same ring.

Example 2: Suppose the agents start at the same vertical ring and they release at the
same time their tokens as in Figure 6(a). The agents will always meet (at the same
time) a token going up while executing Procedure HorScan at step 2 or 4 of Procedure
FindTokenHor, until they place (possibly not at the same time) their second token one
horizontal ring above the other’s initial horizontal ring as in Figure 6(b). When they next
execute Procedure HorScan at step 2 of Procedure FindTokenHor, they meet the other’s
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AB T1(A)T1(B) T2(A)T2(B)

(a) (b)

Fig. 6. Two agents A and B starting at the same vertical ring: (a) Each agent releases both its tokens at its starting
node. (b) Eventually each agent places its (T2) token one horizontal ring above the other’s initial horizontal ring.

first token (possibly not at the same time) while moving down. Hence they again correctly
decide that they have started at the same ring.

Example 3: Suppose the agents start (at the same time) at different horizontal and
vertical rings and they release their tokens as in Figure 7(a). The agents will always meet
(at the same time) a token going up while executing Procedure HorScan at step 2 or 4 of
Procedure FindTokenHor, until they place (possibly not at the same time) their second
token one horizontal ring above the other’s initial horizontal ring as in Figure 7(b). Now
while executing Procedure HorScan at step 2 of Procedure FindTokenHor, they will meet
(possibly not at the same time) a token while going right and they will exit the loop
deciding that they have started in different rings which is correct.

Notice that in Examples 2, 3, if the initial vertical distance between the agents is 1 then
at least one of the agents (or both if the torus consists of only 2 horizontal rings) will
meet the other’s first token immediately after it goes down (in Example 2) or right (in
Example 3) while executing HorScan at step 2 of Procedure FindTokenHor. That is the
agent does not move at all its tokens. However, its decisions are again correct.

We also use Procedures VerScan and FindTokenVer by which the agents scan one by one
the vertical rings of the torus as in Figure 8. Procedures VerScan and FindTokenVer have
exactly the same properties with Procedures HorScan and FindTokenHor respectively, if
we replace direction down with right, right with down and up with left. If the agents
have a guarantee that they have started in different horizontal and vertical rings then
(similarly as before) by executing Procedure FindTokenVer they will exit the procedure,
meeting (possibly not at the same time) a token while they move down (see Figure 9).
Both procedures FindTokenHor and FindTokenVer need O(nm) time units.
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A B
T1(A) T1(B)T2(A)

T2(B)

(a) (b)

Fig. 7. Two agents A and B starting at different horizontal and vertical rings: (a) Each agent releases both its
tokens at its starting node. (b) Eventually each agent places its (T2) token one horizontal ring above the other’s
initial horizontal ring.

Procedure VerScan

1: repeat
2: go right, down, left
3: until you meet a token

We also use Procedure RVDRing which solves rendezvous with detection in an oriented
ring for two agents having two tokens and constant memory each. Suppose that the agents
release at the same time their tokens and they start, possibly having a delay as explained
below, executing Procedure RVDRing. Then they solve rendezvous with detection (see
Figure 10).

Lemma 9. Consider two mobile agents with constant memory on an oriented ring con-
sisting of n nodes. The agents have two tokens each (identical to each other). Let dx ≤ n/2
be the distance between A and B and B has been placed dx steps to the right of A.
The agents release at the same time their tokens and they start executing Procedure
RVDRing(right), but possibly B starts with a delay. Then they solve rendezvous with
detection in O(n2) time.

Procedure FindTokenVer

1: repeat
2: VerScan
3: if you meet token left then
4: VerScan
5: go one step right and move a token there
6: end if
7: until you meet a token down
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start

Fig. 8. An agent executing Procedure FindTokenVer.

Procedure RVDRing(direction)

1: move a token one step to the direction
2: while you are at a node with less than 2 tokens do
3: move to the direction until you meet the fourth token
4: move this token one step to the direction
5: end while
6: go to the direction until you meet a node v with a token
7: if there are 2 tokens at v then
8: return
9: else

10: wait there
11: end if

Proof. Since there are always 4 tokens in the ring, each agent always meets (at step 3
of the procedure) the same token. Let us call this token T2 or second. Each agent (say
A) repeatedly moves the same token T2(A) until it hits the other’s token T1(B), which
is placed at B’s starting node. An agent Z never moves its own or the other’s T1(Z)
token. Consider the moment at which an agent A, after moving to the right token T2(A),
it touches another token (which should be token T1(B)). The total distance covered by
agent A is 1 + (dx− 1)(n+ 1). The other agent B has covered at most the same distance,
hence moving token T2(B) at most dx steps to the right. There are two cases:

i) Suppose that the initial distance between the agents was dx = n/2 and they start at
the same time. Hence agent A has travelled a total distance of 1 + (n/2− 1)(n+ 1) until
it touches token T1(B) at time τ . Since they have travelled for the same time τ , agent B
moves its second token T2(B) having also covered a total distance of 1 + (n/2− 1)(n+ 1).
But then B should touch token T1(A) at τ . Now both agents discover this at an additional
n/2 time according to the procedure.

ii) Suppose that the initial distance between the agents was dx < n/2. Hence when agent
A touches token T1(B) having covered a total distance of 1 + (dx − 1)(n + 1) agent B
should not been touching T1(A) (as this is further than dx steps away from T1(B)). In
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T1(A) T1(B)
T1(A) T1(B)

T2(A) T2(B)

(a) (b)

T1(A) T1(B)
T2(A)T2(B)

(c)

Fig. 9. Two agents A and B starting at different horizontal and vertical rings: (a) Each agent releases both its
tokens at its starting node. (b) Each agent moves one of its tokens, right. (c) Eventually each agent moves its
(T2) token one vertical ring left of the other’s initial vertical ring.

fact B needs at least n + 1 time units more (at least one round) to touch token T1(A).
Now according to the procedure agent A travels for another at most n− dx time units to
meet token T2(B) and waits for agent B which will eventually come. The situation has
been depicted in Figure 10. Procedure RVDRing takes O(n2) time. 2

Combining those procedures we now give the main Procedure SearchTorus that will be
used in our algorithms. A high-level description of the Procedure SearchTorus is the
following:

The two agents search one by one the horizontal rings of the torus (using Procedure
FindTokenHor) to discover whether they have started in the same ring. If so, then they
execute Procedure RVDRing(down) and then Procedure RVDRing(right). Otherwise they
try to ‘catch’ each other on the torus using a path, marked by their tokens. If they do not
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(a) (b)

T1(A) T1(A)

T1(B) T1(B)

T2(A)
T2(B)

(c)

T1(A)

T1(B)

T2(A)

T2(B)

(d)

T1(A)

T1(B)

T2(A)

T2(B)

Fig. 10. In a ring: two agents with constant memory and two movable tokens each solve rendezvous with detection.

rendezvous then they search one by one the vertical rings of the torus (using Procedure
FindTokenVer). They again try to ‘catch’ each other on the torus.

Let the agents execute Procedure SearchTorus. They release their tokens at their starting
positions and follow Procedure FindTokenHor. As argued before they will exit Procedure
FindTokenHor either by finding a token while going down (which means that they have
started in the same horizontal or vertical ring) or by finding a token while going right
(which means that they have started in different horizontal and vertical rings).

Case 1:

Suppose that they exit Procedure FindTokenHor by finding a token while going down.

– Case 1.1: Suppose that they had started in the same horizontal ring and let w.l.o.g
dx ≤ n/2 be the distance to the right between A and B. The agents move as explained
in Example 1 and Figure 5. While executing Procedure FindTokenHor, agent A has
moved as follows. After 6n time units it meets its own tokens for the second time and
then goes one step down. This is repeated m− 1 times (until it is one horizontal ring
above its starting node). It takes him another 1 + m time units to pick up its second
token and move back to its starting node. Agent B travels exactly the same time.
Hence both agents reach at the same time at their starting points. They start at the
same time executing Procedure RVDRing(down) in their vertical rings and (since they
are alone in their vertical rings) they again finish Procedure RVDRing(down) reaching
their starting points at the same time5. Then they execute Procedure RVDRing(right)

5 Notice that in this case there are 2 tokens in each vertical ring and hence the agents will exit Procedure
RVDRing(down) at step 8.
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Procedure SearchTorus

1: release both tokens
2: FindTokenHor
3: if you meet a token down then
4: (* Same Ring *)
5: go one step up
6: if you see only one token then
7: pick-up token
8: go up until you meet a token
9: release token

10: end if
11: (* RVDRing on the vertical ring with direction down *)
12: RVDRing(down)
13: (* RVDRing on the horizontal ring with direction right *)
14: RVDRing(right)
15: if not rendezvous then
16: stop and declare rendezvous impossible
17: end if
18: else
19: (* Different Ring *)
20: go up until you meet a token
21: go one step down
22: repeat
23: go left, wait 1 time unit
24: until (rendezvous) OR (you meet a token for the second time)
25: if not rendezvous then
26: Synchronize
27: release token
28: FindTokenVer
29: go left until you meet a token
30: go one step right
31: repeat
32: go up, wait 1 time unit
33: until (rendezvous) OR (you meet a token for the second time)
34: end if
35: end if

Procedure Synchronize

1: go up
2: repeat
3: wait 1 time unit, go left
4: until you meet a token
5: pick up token
6: if you do not see tokens then
7: (* it means that you were distance > 1 down *)
8: go up until you meet token
9: end if

10: release token
11: FindTokenHor
12: go up
13: go right until you meet token
14: pick up token
15: go down
16: go right until you meet token
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in the horizontal ring. After that, in view of Lemma 9 either they rendezvous (if their
initial distance was less than n/2) or stop declaring rendezvous impossible (if their
initial distance was n/2), which in view of Theorem 1 is correct.

– Case 1.2: Suppose that they had started in the same vertical ring and let w.l.o.g
dy ≤ m/2 be the distance downwards between A and B. The agents move as explained
in Example 2 and Figure 6. While executing Procedure FindTokenHor, agent A has
moved as follows. After 6n time units it meets its own token for the second time and
then goes one step down. This is repeated dy − 1 times (until it is one horizontal
ring above the ring where B’s first token lies). It takes him another 1 + dy time
units to pick up its second token and move back to its starting node. Agent A has
travelled a total distance of (6n + 1)(dy − 1) + 1 + dy. Agent B travels for 6n time
units until it meet its own token for the second time and then goes one step down.
This is repeated m − dy − 1 times (until it is one horizontal ring above the ring
where A’s first token lies). It takes him another 1 + m − dy time units to pick up
its second token and move back to its starting node. Agent B has travelled a total
distance of (6n + 1)(m − dy − 1) + 1 + m − dy. Since dy ≤ m/2, either agent A
has reached first its starting point or both agents arrive at the same time at their
starting nodes. The agents start executing Procedure RVDRing(down) in their vertical
rings with B starting possibly delayed. Suppose that when agent A reaches its starting
point, agent B still executes Procedure FindTokenHor. That is B will be still moving its
second token T2(B) on the same vertical ring, approaching token T1(A) from above. As
long as B has not yet completed Procedure FindTokenHor and A executes Procedure
RVDRing(down), there are always 4 tokens on this vertical ring and agent A always
moves token T2(A) with direction down from T1(A) to T1(B). If A exits the loop at
step 5 of Procedure RVDRing(down) before agent B finishes Procedure FindTokenHor

then A (executing step 6 of Procedure RVDRing(down)) will either reach token T2(B)
or T1(A). After that, in view of Lemma 9 they will rendezvous if and only if their
initial distance was less than m/2. If they do not rendezvous, the agents execute
Procedure RVDRing(right) in their horizontal rings6 and they stop, declaring rendezvous
impossible, which in view of Theorem 1 is correct.

Case 2:

Suppose that while the agents execute Procedure FindTokenHor at step 2 of Procedure
SearchTorus, one of them finds first a token while moving right (as explained in Example
3 and Figure 7). Then this agent knows that they have started in different horizontal and
vertical rings.

Let dy be the shortest initial distance between the two agents. It holds m− 2dy ≥ 0.

Case 2.1: m− 2dy > 0

6 Notice that in this case there are 2 tokens in each horizontal ring and hence the agents will exit Procedure
RVDRing(right) at step 8.
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Fig. 11. a) Agent A executing Procedure SearchTorus until step 24, b) Agent B executing Procedure SearchTorus
until step 24.

Let agent B be initially at distance dy down of agent A and dx to the right (notice that
dx can have any value lower than n).

Consider agent A executing Procedure SearchTorus (Figure 11(a)): While executing Pro-
cedure FindTokenHor at step 2 of Procedure SearchTorus, it meets its own token (going
up) for the first time after 3n time units. It takes him another 3n time units to meet
its token (node 1 in Figure 11(a)) for the second time plus one for going down. This is
repeated dy−1 times (until it is one ring above the ring where B’s first token lies) at node
2 in Figure 11(a). Agent A leaves its T2(A) token there and then it takes him another
3(dx − 1) + 2 time units to meet B’s first token (node 3 in Figure 11(a)). So far it has
spent the following time units.

τ(A)(1→3) = (1 + 6n)(dy − 1) + 3(dx − 1) + 2 (1)

Meanwhile, agent B executes Procedure SearchTorus starting at node 3 (Figure 11(b))
and reaches node 4 and then node 1 (by executing Procedure FindTokenHor), spending
a total time of:

τ(B)(3→1) = (1 + 6n)(m− dy − 1) + 3(n− dx − 1) + 2 (2)

From (1), (2), the time difference τ(A)(1→3) − τ(B)(3→1) is:

τ(A)(1→3) − τ(B)(3→1) = (1 + 6n)(2dy −m) + 3(2dx − n) (3)

Since 2dy −m ≤ −1 and dx ≤ n− 1, we get:

τ(A)(1→3) − τ(B)(3→1) ≤ (1 + 6n)(−1) + 3(2(n− 1)− n) = −7− 3n < 0
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Hence, agent A reaches node 3 before B reaches node 1. Therefore agent A meets first
B’s first token and knows that they have started in different horizontal and vertical rings.

Then agent A goes up until it meets a token (step 20 of Procedure SearchTorus). Lets
calculate the time spent by agent A to reach node 4 (which is on the vertical ring defined
by node 3 and one horizontal ring above node 1).

τ(A)(1→4) = (1 + 6n)(dy − 1) + 3(dx − 1) + 2 + dy + 1 (4)

We first show that token T2(B) is either at node 4 or upwards of node 4 in that vertical
ring and downwards of node 3 or at node 3: Agent B moves its second token T2(B)
downwards in the vertical ring where its first token lies (at node 3) until node 4. Suppose
that B places token T2(B) at node 4 before A gets there. Then B should find token T1(A)
at node 1 and should go upwards until it meets A’s second token T2(A) which has been
placed by A at node 2 (or node 1 if dy = 1). Hence, agent B, after reaching node 1, goes
up for at least m−dy+1 time units (step 20 of Procedure SearchTorus) until it meets the
other’s second token (node 2 in Figure 11). So far it has spent the following time units.

τ(B)(3→2) = (1 + 6n)(m− dy − 1) + 3(n− dx − 1) + 2 +m− dy + 1 (5)

From (4), (5), the time difference τ(A)(1→4) − τ(B)(3→2) is:

τ(A)(1→4) − τ(B)(3→2) = (1 + 6n)(2dy −m) + 3(2dx − n) + 2dy −m (6)

Since 2dy −m ≤ −1 and dx ≤ n− 1, we get:

τ(A)(1→4) − τ(B)(3→2) ≤ (1 + 6n)(−1) + 3(2(n− 1)− n)− 1 < 0

Hence, agent A reaches node 4 before B reaches node 2. Therefore token T2(B) is either
at node 4 or upwards of node 4 until node 3 in the same vertical ring.

Suppose that token T2(B) is in a horizontal ring not adjacent to the horizontal ring that
T1(A) lies (T2(B) could be still at node 3). This means that the other agent B is still
searching that ring coming from left to right. Therefore they will rendezvous, since A,
after meeting token T2(B), goes one step down and then left-wait-1-time-unit repeatedly.
Hence the only remaining case is that token T2(B) is just one horizontal ring above the
ring where token T1(A) lies as shown in Figure 11. Hence agent A has moved up for
dy + 1 time units (step 20 of Procedure SearchTorus) until it meets the other’s second
token (node 4 in Figure 11(a)). Then agent A goes one step down and spends another
2(dx − 1) + 1 time units (steps 22 − 24) until it meets its own first token T1(A) for the
first time. Thus agent A went back to node 1 spending a total time of:

τ(A)(1→1) = (1 + 6n)(dy − 1) + 3(dx − 1) + 2 + dy + 2 + 2(dx − 1) + 1 (7)

Suppose that the agents do not rendezvous until A meets token T1(A) again (and hence
exiting the loop at step 24) at an additional 2n time. Notice that this means that agent B
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has reached node 1 before agent A (for the first time). Therefore from (7), (2), it should
hold:

τ(A)(1→1) − τ(B)(3→1) > 0→

(1 + 6n)(2dy −m) + 3(2dx − n) + 2(dx − 1) + dy + 3 > 0 (8)

Meanwhile, agent B, after reaching node 2, goes one step down and spends another
2(n − dx − 1) + 1 time units (steps 22 − 24) until it meets its own first token T1(B) for
the first time. Thus agent B went back to node 3 spending a total time of:

τ(B)(3→3) = (1 + 6n)(m− dy− 1) + 3(n− dx− 1) + 2 +m− dy + 2 + 2(n− dx− 1) + 1 (9)

From (7), (9), the time difference τ(A)(1→1) − τ(B)(3→3) is:

τ(A)(1→1) − τ(B)(3→3) = (1 + 6n)(2dy −m) + 3(2dx − n) + 2dy −m+ 2(2dx − n) (10)

Since 2dy −m ≤ −1 and dx ≤ n− 1, we get:

τ(A)(1→1)−τ(B)(3→3) ≤ (1+6n)(−1)+3(2(n−1)−n)−1+2(2(n−1)−n) = −n−12 < 0

Hence, agent A reaches node 1 before B reaches node 3.

Case 2.2: m− 2dy = 0

Let agent B be initially at distance dy down of agent A and dx to the right, where
n− 2dx ≥ 0.

Consider agent A executing Procedure SearchTorus. From (1), it takes him τ(A)(1→3) =
(1 + 6n)(dy− 1) + 3(dx− 1) + 2 to get to node 3. Meanwhile, from (2), (3), agent B either
reaches at the same time or has not yet reached node 1. Therefore agent A meets first B’s
first token and knows that they have started in different horizontal and vertical rings.

Then agent A goes up until it meets a token (step 20 of Procedure SearchTorus). From
(6) we have: τ(A)(1→4) − τ(B)(3→2) ≤ 0. Hence agent A reaches node 4 before or at the
same time that B reaches node 2. Following the same argument as before we conclude
that token T2(B) is either at node 4 or upwards of node 4 until node 3 in the same vertical
ring. In the last case, as argued before, the agents will meet. Suppose that token T2(B)
is just one horizontal ring above the ring where token T1(A) lies as shown in Figure 11.
Suppose that the agents do not rendezvous until A meets token T1(A) again (and hence
exiting the loop at step 24) at an additional 2n time. Notice that this means that agent
B has reached node 1 before agent A (for the first time). Therefore (8) should hold.

Finally from (7), (9), (10), we have that τ(A)(1→1) − τ(B)(3→3) ≤ 0 meaning that agent
A reaches node 1 before or at the same time that B reaches node 3.

Therefore Procedure SearchTorus correctly instructs, in both above sub-cases, agent A
to go back to node 1 exactly as in Figure 11(a). Agent B either reaches at the same time
or has not yet reached node 3.
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Fig. 12. a) Agent A executing Procedure Synchronize until step 10, b) Agent B executing Procedure Synchronize
until step 10.

Agent A has travelled for a total number of (1 + 6n)(dy − 1) + 3(dx − 1) + 2 + dy + 2 +
2(dx − 1) + 1 + 2n time units until entering step 25 of Procedure SearchTorus while
agent B travelled a total number of (1 + 6n)(m− dy − 1) + 3(n− dx− 1) + 2 for reaching
node 1, m − dy + 1 for reaching node 2 and another 1 + 2(n − dx − 1) + 1 + 2n for
reaching node 3 and exiting the loop at step 24. Procedure Synchronize (Figure 12(a))
forces agent A to travel another 1 + 2(n− dx) time units to reach node 4 (steps 1− 4 of
Procedure Synchronize). Agent A picks-up the token T2(B) at node 4 and spends another
(m−dy−1) time units (unless token T2(B) was at node 3 together with token T1(B) which
means that m − dy = 1) to reach node 3 (steps 5 − 9 of Procedure Synchronize). Now
agent A releases the token at node 3 and executes Procedure FindTokenHor (at step 11)
and after (1+6n)(m−dy−1)+3(n−dx−1)+2 time units it reaches node 1 having placed
the carried token at node 4. Finally, after 2 + n time units (steps 12− 16) reaches node 1
with a token beforehand. Similarly, agent B (Figure 12(b)) travels for 1 + 2dx time units
(steps 1 − 4) to reach node 2, picks-up token T2(A) at node 2 and then travels another
(dy − 1) time units (unless token T2(A) was at node 1 together with token T1(A) which
means that dy = 1) to reach node 1 (steps 5− 9). Then releases the token at node 1 and
executes Procedure FindTokenHor (at step 11) and after (1 + 6n)(dy − 1) + 3(dx − 1) + 2
time steps reaches node 3 having placed the carried token at node 2. Finally, agent B
reaches node 3 after an additional 2 + n time (steps 12− 16) having a token before hand.
Notice, that for the whole Procedure Synchronize, the agents do not interfere with each
other: agent A only moves in the area downwards of node 3 and upwards of node 1, while
agent B only moves in the area downwards of node 1 and upwards of node 3.
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The total time spent by agent A is:

(1 + 6n)(dy − 1) + 3(dx − 1) + 2 + dy + 2 + 2(dx − 1) + 1 + 2n+

+1 + 2(n− dx) + (m− dy − 1) + (1 + 6n)(m− dy − 1) + 3(n− dx − 1) + 2 + 2 + n =

= (1 + 6n)(m− 2) + 3(n− 2) +m− 1 + 2(n− 1) + 3n+ 10

The total time spent by agent B is:

(1 + 6n)(m− dy − 1) + 3(n− dx − 1) + 2 +m− dy + 2 + 2(n− dx − 1) + 1 + 2n+

+1 + 2dx + (dy − 1) + (1 + 6n)(dy − 1) + 3(dx − 1) + 2 + 2 + n =

= (1 + 6n)(m− 2) + 3(n− 2) +m− 1 + 2(n− 1) + 3n+ 10

Hence the agents reach their initial nodes at the same time having one token beforehand.

They next, (going back to step 27 of Procedure SearchTorus) release their tokens at their
initial nodes and execute Procedure FindTokenVer (the configuration will be like the one
shown in Figure 9). Finally they move following steps 29− 33 in a similar way as in steps
20− 24 (just rotated by 90 degrees).

3.2.1 Rendezvous with Detection in an oriented n × n torus using two
movable tokens and constant memory

Algorithm 2 RVD2n
1: SearchTorus
2: if not rendezvous then
3: stop and declare rendezvous impossible
4: end if

Theorem 6. The Rendezvous with Detection problem on a n × n oriented torus can be
solved by two agents using two movable tokens and constant memory each, in time O(n2).

Proof. The agents execute Algorithm RVD2n. If the agents started in the same horizontal or
vertical ring they solve Rendezvous with Detection as explained above (Case 1). Suppose
that the agents started in different horizontal and vertical rings (see Figure 7). Let, w.l.o.g.,
agent B be dy down of agent A and dx to the right, where m− 2dy ≥ 0.

Suppose that m− 2dy > 0. If the agents do not rendezvous until A meets token T1(A) for
the second time then this means that agent B had reached token T1(A) before agent A.
Thus (8) should hold:

(1 + 6n)(2dy −m) + 3(2dx − n) + 2(dx − 1) + dy + 3 > 0
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However:
(1 + 6n)(2dy −m) + 3(2dx − n) + 2(dx − 1) + dy + 3 ≤

(1 + 6n)(−1) + 3(2(n− 1)− n) + 2(n− 1− 1) + dy + 3 = dy − n− 8

By taking n = m we have: dy − n − 8 = dy − m − 8 < 0. Therefore (8) does not hold
which means m = 2dy. Observe that if m = n is an odd number, then they will always
rendezvous.

Now they get synchronized as explained above and they execute Procedure FindTokenVer
(see Figure 9). Let, w.l.o.g., agent B′ be d′y = dy down of agent A′ and d′x to the right,
where n− 2d′x ≥ 0.

Suppose that n − 2d′x > 0. If they do not rendezvous until A meets token T1(A) for
the second time then this means that agent B had reached token T1(A) before agent A.
Therefore (8) should hold (replacing dx with d′y, dy with d′x and interchanging m with n):

(1 + 6m)(2d′x − n) + 3(2d′y −m) + 2(d′y − 1) + d′x + 3 > 0

However:
(1 + 6m)(2d′x − n) + 3(2d′y −m) + 2(d′y − 1) + d′x + 3 ≤

(1 + 6m)(−1) + 2(d′y − 1) + d′x + 3 ≤ d′x − 5m

By taking n = m we have: d′x − 5m = d′x − 5n < 0. Therefore (8) does not hold which
means n = 2d′x. Hence, in view of Theorem 1, they can safely decide that rendezvous is
impossible after O(n2) total time. 2

3.2.2 Rendezvous without Detection in a n ×m oriented torus using two
movable tokens and constant memory

We now give a RV algorithm for two agents with constant memory in an arbitrary n×m
anonymous, synchronous and oriented torus. We remind the reader that the agents do
not know n or m.

The agents first execute Procedure SearchTorus. If no rendezvous occurs and no de-
cision is made about its impossibility7 (i.e., the agents have started in different rings),
then the agents mark a rectangle with their tokens on the torus by executing Procedure
BuildRectangle. Then they execute Procedure Chase: they try to catch each other on
the previously built rectangle which will eventually happen unless they had started at
distance (n/2,m/2) (in that case the algorithm runs forever). We give below Procedure
Chase.

We first prove that if the configuration is as in Figure 13 and exactly one of the following
holds: either the horizontal distance between the agents is n/2 or the vertical distance
between the agents is m/2, then Procedure Chase leads the agents to meet.

7 Notice that if the agents have started in the same (horizontal or vertical) ring then they solve RVD.

33



Procedure Chase

1: repeat
2: repeat
3: go down
4: until you meet the third token
5: repeat
6: go right
7: until you meet the third token
8: repeat
9: go up

10: until you meet the third token
11: repeat
12: go left
13: until you meet the third token
14: until rendezvous

1

2 3

4

(a)

1

2 3

4

(b)

Fig. 13. Following Procedure Chase: a) Agent A’s movement on the rectangle starting at node 1, b) Agent B’s
movement on the rectangle starting at node 3.

Lemma 10. Suppose that there is a rectangle marked by four tokens in a n ×m torus.
Suppose also that exactly one of the following holds: either the horizontal distance is n/2
or the vertical distance is m/2. There are two agents situated on the upper left and bottom
right corners of the rectangle (nodes 1 and 3 respectively in Figure 13). The agents start,
possibly not at the same time, executing Procedure Chase. Then they will rendezvous in
O(n2 +m2) time.

Proof. Agent A starts at node 1 (depicted in Figure 13(a)) and by following the procedure
(steps 2 − 4) reaches node 2 after m + dy time units. Then following steps 5 − 7 of the
procedure reaches node 3 after n+ dx time units. After steps 8− 10 reaches node 4 after
another m+dy time units. Finally, after steps 11−13 reaches node 1 after another n+dx
time units. Agent A completes a full round going back to node 1 in a total number of
2(n+ dx) + 2(m+ dy) time units.
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Similarly, agent B starts at node 3 (depicted in Figure 13(b)) and by following the proce-
dure (steps 2− 4) reaches node 4 after 2m− dy time units. Then following steps 5− 7 of
the procedure reaches node 1 after 2n− dx time units. After steps 8− 10 reaches node 2
after another 2m− dy time units. Finally, after steps 11− 13 reaches node 3 after another
2n−dx time units. Agent B completes a full round going back to node 3 in a total number
of 2(2n− dx) + 2(2m− dy) time units.

We show that the agents maintain their order at which they arrive at landmark nodes
and if dx = n/2 or dy = m/2 (but not both) they move closer and closer to each other.
Suppose w.l.o.g that either dx = n/2 or dy = m/2 (but not both). As illustrated above,
agent A starts each round at node 1 and consecutively reaches node 2, 3, 4 and again 1
when it exits the loop at step 4, 7, 10, and 13 respectively. Similarly, agent B starts each
round at node 3 and consecutively reaches node 4, 1, 2 and again 3 when it exits the
loop at step 4, 7, 10, and 13 respectively. Let agent A be the one that has to cover less
distance than B to complete its round. Hence A approaches faster any given landmark
node in each round. Eventually, there will be a moment at which agent A will reach a
node k ∈ {1, 2, 3, 4} while agent B will be on its way to (k + 1) modulo 4 having already
passed from node k. If these two nodes belong to the same horizontal ring and dx = n/2
then their order does not change since they have to cover the same distance from k to
(k + 1) modulo 4. If these two nodes belong to the same vertical ring and dy = m/2 then
their order does not change since they have to cover the same distance from k to (k + 1)
modulo 4. We claim that agent A cannot reach first, node (k+ 1) modulo 4 in any of the
remaining cases without meeting B. Lets see why:

– Case 1: Nodes k, (k + 1) modulo 4 are in the same vertical ring and dy < m/2.
• Case 1.1: k = 1. Agent B is on its way to node 2, following steps 8 − 10, that is

traversing once the vertical ring which contains node 1 approaching node 2 from
below. Agent A starts to follow steps 2 − 4, that is traversing once the vertical
ring which contains node 1 but having the opposite direction with agent B and
approaching node 2 from above. Hence agent A cannot reach node 2 before B
without meeting B.
• Case 1.2: k = 3. Agent B is on its way to node 4, following steps 2 − 4, that is

traversing once the vertical ring which contains node 3 approaching node 4 from
above. Agent A starts to follow steps 8 − 10, that is traversing once the vertical
ring which contains node 3 but having the opposite direction with agent B and
approaching node 4 from below. Hence agent A cannot reach node 4 before B
without meeting B.

– Case 2: Nodes k, (k + 1) modulo 4 are in the same horizontal ring and dx < n/2.
• Case 2.1: k = 2. Agent B is on its way to node 3, following steps 11 − 13, that

is traversing once the horizontal ring which contains node 2 approaching node 3
from the right. Agent A starts to follow steps 5 − 7, that is traversing once the
horizontal ring which contains node 2 but having the opposite direction with agent
B and approaching node 3 from the left. Hence agent A cannot reach node 3 before
B without meeting B.
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• Case 2.2: k = 4. Agent B is on its way to node 1, following steps 5 − 7, that
is traversing once the horizontal ring which contains node 4 approaching node 1
from the left. Agent A starts to follow steps 11 − 13, that is traversing once the
horizontal ring which contains node 4 but having the opposite direction with agent
B and approaching node 1 from the right. Hence agent A cannot reach node 1
before B without meeting B.

Since agent A comes closer and closer to agent B and their order cannot change without
A meeting B, they will eventually meet after O(n+m) rounds. Hence they will meet after
O(n2 +m2) total time. 2

The following Algorithm RV2mn is a RV algorithm for 2 agents having constant memory
in a n × m oriented torus. In fact one of the following things could happen: either the
agents rendezvous, or they detect that they are in the same ring in symmetrical positions
or the algorithm runs forever (in that case they are at horizontal distance n/2 and vertical
distance m/2).

Procedure BuildRectangle

1: let k be the number of tokens you see
2: (* give enough time (2m + n) to the other agent to finish Procedure Synchronize *)
3: if k = 1 then
4: go right until you meet the second node with a token
5: else
6: go right until you meet the first node with a token
7: end if
8: go down until you meet the second node with k tokens
9: move a token one step to the left

10: (* give enough time (2m + n) to the other agent to finish building the rectangle *)
11: go right until you meet the second node with a token
12: for 2 times do
13: go down until you meet the second node with a token
14: end for

Algorithm 3 RV2mn
1: SearchTorus
2: if not rendezvous then
3: BuildRectangle
4: Chase
5: end if

Theorem 7. The Rendezvous without Detection problem on an arbitrary n×m oriented
torus can be solved by two agents using two movable tokens and constant memory each,
in time O(n2 +m2).
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Proof. Let (w.l.o.g.) agent B is located initially a distance dy down of agent A, where
m− 2dy ≥ 0 and dx to the right. The agents follow Algorithm RV2mn. They first execute
Procedure SearchTorus. If they have started on the same horizontal or vertical ring then
they solve Rendezvous with Detection as explained above. Suppose that they have started
on different horizontal and vertical rings (Figure 7). We first prove that if they do not
rendezvous after horizontal and vertical scanning then either n− 2dx = 0 or m− 2dy = 0
(or both).

Suppose that (as described above) the agents exit the loop at step 24 without rendezvous
and m− 2dy > 0. Thus (8) should hold:

(1 + 6n)(2dy −m) + 3(2dx − n) + 2(dx − 1) + dy + 3 > 0

Since m− 2dy > 0 and dx < n, we have:

(1 + 6n)(2dy −m) + 3(2dx − n) + 2(dx − 1) + dy + 3 ≤

(1 + 6n)(−1) + 3(2(n− 1)− n) + 2(n− 1− 1) + dy + 3 = dy − n− 8

Hence it should hold that:
dy − n− 8 > 0 (11)

The agents execute Procedure Synchronize and reach their initial nodes at the same time
having one token beforehand as explained above. Then they release the tokens at their
initial nodes and execute Procedure FindTokenVer (step 28 of Procedure SearchTorus)
as in Figure 9. Suppose that they do not rendezvous. Consider the agent whose horizontal
movement (before executing Procedure FindTokenVer) until it reaches the other’s agent
ring is d′x, where n− 2d′x ≥ 0.

Suppose that (as described above) the agents exit the loop at step 33 without rendezvous
and n− 2d′x > 0. Then from (8), by interchanging n with m and substituting dx with d′y
and dy with d′x we get:

(1 + 6m)(2d′x − n) + 3(2d′y −m) + 2(d′y − 1) + d′x + 3 > 0

Since n− 2d′x > 0 and d′y < m, we have:

(1 + 6m)(2d′x − n) + 3(2d′y −m) + 2(d′y − 1) + d′x + 3 ≤

(1 + 6m)(−1) + 3(2(m− 1)−m) + 2(m− 2) + d′x + 3 = d′x −m− 8

Hence it should hold that:
d′x −m− 8 > 0 (12)

By adding relations (11), (12) we should have dy+d′x−n−m−16 > 0 which is impossible.
Hence either m− 2dy = 0 or n− 2dx = 0 (or both).

Now the two agents have reached their initial nodes T1(A) and T1(B) in Figure 9(c). As
before, agent A exits the loop at step 33 and arrives at node 1 before or at the same time
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Fig. 14. Following Procedure BuildRectangle

that agent B exits the loop at step 33 and arrives at node 3. Since the agents did not
meet, there are 3 possible configurations shown in Figure 14. As we will see, in all cases
both agents spend 2m+n time units from the time they enter Procedure BuildRectangle
until they move a token at step 9.

We could instruct the agents to synchronize again by using a procedure similar to Proce-
dure Synchronize. However, as we will see this is not necessary at this time.

Let B be the agent that escaped from node T1(A) before A gets there. Agent B has moved
left from token T1(A) until it meets token T2(A), then moved one step right and up until
it meets token T1(B) and spent at most another n− dx + 1 + 2(m− dy− 1) + 1 + 2m time
units before starting Procedure BuildRectangle. Agent A moves up from token T1(A)
until it meets it again, thus needs 2m to start Procedure BuildRectangle. If A sees two
tokens at its initial node (Figure 14(b) or 14(c)) it enters step 6 and spends n time units
until it meets again token T1(A). If A sees one token at its initial node (Figure 14(a)) it
enters step 4 and spends n time units until it meets again token T1(A). Step 8 takes A
another 2m time units (even if B moved a token in that vertical ring, A searches only for
nodes with 2 tokens). We have:

n− dx + 1 + 2(m− dy − 1) + 1 + 2m < 2m+ 2m+ n

Therefore, agent B starts executing Procedure BuildRectangle before agent A moves a
token. In all cases agent A will be the first to reach step 9 of Procedure BuildRectangle

and move a token since after entering Procedure BuildRectangle both agents need 2m+n
time units until they move a token.

After entering Procedure BuildRectangle, agent B needs another 2m + n + 1 time to
move a token. Agent A spends 1 time unit to move a token and then another n time
units to meet this token again (since after moving a token, there are exactly 2 tokens in
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this horizontal ring). Finally (since after moving a token, there are exactly 2 tokens in
this vertical ring), agent A finish Procedure BuildRectangle spending another 2m time
units. Hence, by the time agent A starts executing Procedure Chase agent B has finished
building the rectangle. In all configurations of Figure 14 each agent moves a token from its
initial node one step to the left and hence the rectangle will be built correctly. Therefore
the agents start (possibly not synchronized) executing Procedure Chase which according
to Lemma 10 ends up to rendezvous unless dx = n/2 and dy = m/2. 2

An interesting question which naturally follows is: what is the relation of n and m for
which Algorithm RV2mn is indeed a RVD algorithm? The answer is given by the following
lemma.

Lemma 11. If after the horizontal and vertical scanning of Algorithm RV2mn the agents
do not rendezvous and m−1

10
≤ n ≤ 10m+1 then their distance is (n/2,m/2) and therefore

rendezvous is impossible.

Proof. The agents execute Algorithm RV2mn. Suppose that they do not rendezvous. Recall
that if the agents do not rendezvous after the horizontal scanning and vertical scanning,
then either m = 2dy or n = 2dx holds (or both).

Case 1: Suppose that m = 2dy and n− 2dx ≥ 1.

Consider agents A and B, where B is initially located a distance dy down of A and dx to
the right. Since the agents did not rendezvous after the vertical scanning, by interchanging
dx with dy and n with m in (8) we should have:

(1 + 6m)(2dx − n) + 3(2dy −m) + 2(dy − 1) + dx + 3 > 0

Since m = 2dy we get:

(1 + 6m)(2dx − n) +m− 2 + dx + 3 > 0

(1 + 6m)(2dx − n) +m− 2 + dx + 3 ≤ −(1 + 6m) +m− 2 +
n− 1

2
+ 3 =

n− 1

2
− 5m

Suppose that n ≤ 10m+ 1. Then n−1
2
− 5m ≤ 0 which means that the agents rendezvous

if n− 2dx ≥ 1.

Case 2: Suppose that n = 2dx and m− 2dy ≥ 1.

Consider agents A and B, where B is initially located a distance dy down of A and dx to
the right. Since the agents did not rendezvous after the horizontal scanning, (8) should
hold:

(1 + 6n)(2dy −m) + 3(2dx − n) + 2(dx − 1) + dy + 3 > 0

Since n = 2dx we get:

(1 + 6n)(2dy −m) + n− 2 + dy + 3 > 0
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(1 + 6n)(2dy −m) + n− 2 + dy + 3 ≤ −(1 + 6n) + n− 2 +
m− 1

2
+ 3 =

m− 1

2
− 5n

Suppose that m ≤ 10n+ 1. Then m−1
2
− 5n ≤ 0 which means that the agents rendezvous

if m− 2dy ≥ 1.

Hence if n ≤ 10m+ 1 and m ≤ 10n+ 1 and the agents do not rendezvous then it means
that m = 2dy and n = 2dx. 2

Therefore by Lemma 11 if we knew that n is at least about one tenth and no more than
ten times m then Algorithm RV2mn would be a RVD algorithm for the n×m torus.

3.3 Rendezvous with Detection in a n ×m oriented torus using three
movable tokens and constant memory

If the agents have 3 tokens then we can modify the Algorithm RV2mn to get Algorithm 4
which is a RVD algorithm for an arbitrary n×m anonymous, synchronous and oriented
torus. The idea is the following: If the agents do not meet while they execute Procedure
SearchTorus, they build the rectangle by executing Procedure BuildRectangle, but
instead of executing Procedure Chase, they release their third token to the right of their
starting position. They travel on the rectangle (one agent from inside and the other from
outside), each time moving one step the fifth token they meet: first they move it to the
right until it hits another token and then down until it touches a token. Next they go left
until they meet a token and then up until they meet a token (see Figure 15). If at that
point they see two tokens adjacent then they declare rendezvous impossible. Otherwise
they wait until rendezvous which will occur in less than n + m time. Algorithm RVD3mn

takes O(n2 +m2) time.

Theorem 8. The Rendezvous with Detection problem on an arbitrary n × m oriented
torus can be solved by two agents using three movable tokens and constant memory each,
in time O(n2 +m2).

Proof. The agents follow Algorithm RVD3mn. Suppose that after executing Procedure
SearchTorus they do not rendezvous neither decide that rendezvous is impossible. This
means that either their horizontal distance dx = n/2 or their vertical distance dy = m/2
(or both). Let w.l.o.g. agent A be at node 1 before or at the same time with agent B
reaching node 3 in Figure 15. This means that agent B is dx ≤ n/2 to the right of agent A
and dy ≤ m/2 to the down of agent A. Agent A travels for (2dx+2dy)(dx+dy−2)+dx+dy
time units until it sees its third token touches for the second time a token (at node 3).
The other agent B travels for (2(n−dx)+2(m−dy))(n−dx+m−dy−2)+n−dx+m−dy
time units until it sees its third token touches for the second time a token.

Suppose w.l.o.g. that dx = n/2 and dy ≤ m/2. If dy = m/2 then the two agents should
have started at the same time and always move at the same time their tokens and at the
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Algorithm 4 RVD3mn
1: SearchTorus
2: if not rendezvous then
3: BuildRectangle
4: move right and drop the third token
5: while the token did not hit another token do
6: go right until you meet a token
7: go down until you meet a token
8: go left until you meet a token
9: go up until you meet a token

10: go right until you meet a token
11: move that token one step to the right
12: end while
13: move token down
14: while the token did not hit another token do
15: go down until you meet a token
16: go left until you meet a token
17: go up until you meet a token
18: go right until you meet a token
19: go down until you meet a token
20: move that token one step down
21: end while
22: go left until you meet a token
23: go up until you meet a token
24: if there are two tokens there then
25: stop and declare rendezvous impossible
26: else
27: wait
28: end if
29: end if
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Fig. 15. a) Agent A’s movement on the rectangle starting at node 1, b) Agent B’s movement on the rectangle
starting at node 3.

end (when their third token touches for the second time a token) they find out that the
other’s token touches another token as well. Therefore they declare rendezvous impossible.

If dy < m/2 then agent A starts earlier and sees first its third token touching for the second
time a token at node 3. At that moment, agent B needs at least one more round to move
its third token to node 1. This means another at least 2(n − dx) + 2(m − dy) > dx + dy
time for agent B before reaching node 1. Hence in dx + dy time units agent A will reach
first node 1 waiting for agent B. 2

4 Conclusion

In this paper we investigated on the number of tokens and memory, two agents need in
order to rendezvous in an anonymous oriented torus. We showed that when the agents
have one (movable or unmovable) token each then both RV and RVD problems in an
arbitrary n×m oriented torus require Θ(log n+ logm) memory.

It appears that there is a strict hierarchy on the power of tokens and memory with respect
to rendezvous: a constant number of unmovable tokens are less powerful than two movable
tokens. While the hierarchy collapses on three tokens (we gave an algorithm for rendezvous
with detection in a n×m torus when the agents have constant memory each), it remains
an open question if three tokens are strictly more powerful than two with respect to
rendezvous with detection. It is also interesting that although a movable token is more
powerful than an unmovable one (we showed that an agent with one unmovable token
cannot visit all nodes of any n × n oriented torus unless it has Ω(log n) memory, while
it could do it with a constant memory if it could move its token) it appears that this
power is not enough with respect to rendezvous; the agents with one movable token each,
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RVD requires Θ(log log n) RV and RVD require Θ(log n)

RV in constant mem RV and RVD require Θ(log n)

RVD in constant mem n x n: RVD in constant mem
n x m: RV in constant mem

RVD in constant mem

Fig. 16. Ring vs Torus.

still require Ω(log n) memory to rendezvous in the torus. The results for ring and torus
topologies are shown in Figure 16.

An interesting open problem on the number of tokens for solving rendezvous with or
without detection having constant memory arises when the torus is not oriented. We
conjecture that by using additional tokens one may be able to extend the results of this
paper to the case of the unoriented torus.

As this is the first publication in the literature that studies tradeoffs between the number
of tokens, memory, knowledge and power the agents need in order to meet on a torus
network, a lot of interesting questions remain open:

– Can we improve the time complexity for rendezvous without detection on a n × m
torus using constant memory? Can we improve the time complexity for rendezvous
with detection on a n× n torus using constant memory?

– What is the lower memory bound for two agents with two movable tokens each in
order to do rendezvous with detection in a n×m torus? In particular, can they do it
with constant memory?

– Is there a tradeoff between the number of unmovable tokens needed and the memory
required to solve RV. Specifically, is it possible to solve RV with a linear number of
tokens and constant memory?

43



– What is the situation in a d-dimensional torus? Is it the case that with d− 1 movable
tokens, rendezvous needs Ω(log n) memory while with d movable tokens and constant
memory rendezvous with detection can be done? How does this change if the size of
the torus is not the same in every dimension?

– What is the situation when the torus is asynchronous?
– An interesting problem is that of many agents trying to rendezvous (or gathering) in

a torus network.
– Since the knowledge of the underlying graph topology is essential for obtaining deter-

ministic algorithms with tokens, a challenging open problem is that of an arbitrary
network: What is the tradeoff between the number of tokens and memory needed by
the agents for solving rendezvous with detection in an arbitrary network?
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