
Mobile Agent Rendezvous

in a Synchronous Torus

Evangelos Kranakis1⋆, Danny Krizanc2, and Euripides Markou3⋆⋆

1 School of Computer Science, Carleton University, Ottawa, Ontario, Canada.
kranakis@scs.carleton.ca

2 Department of Mathematics, Wesleyan University, Middletown, Connecticut 06459,
USA. dkrizanc@caucus.cs.wesleyan.edu

3 Department of Computer Science, National Kapodistrian University of Athens,
Athens, Greece. emarkou@cs.ntua.gr

Abstract. We consider the rendezvous problem for identical mobile
agents (i.e., running the same deterministic algorithm) with tokens in
a synchronous torus with a sense of direction and show that there is
a striking computational difference between one and more tokens. More
specifically, we show that 1) two agents with a constant number of un-
movable tokens, or with one movable token, each cannot rendezvous if
they have o(log n) memory, while they can perform rendezvous with de-
tection as long as they have one unmovable token and O(log n) memory;
in contrast, 2) when two agents have two movable tokens each then ren-
dezvous (respectively, rendezvous with detection) is possible with con-
stant memory in an arbitrary n×m (respectively, n×n) torus; and finally,
3) two agents with three movable tokens each and constant memory can
perform rendezvous with detection in a n × m torus. This is the first
publication in the literature that studies tradeoffs between the number
of tokens, memory and knowledge the agents need in order to meet in
such a network.

Keywords: Mobile agent, rendezvous, rendezvous with detection, to-
kens, torus, synchronous.

1 Introduction

We study the following problem: how should two mobile agents move along the
nodes of a network so as to ensure that they meet or rendezvous?

The problem is well studied for several settings. When the nodes of the
network are uniquely numbered, solving the rendezvous problem is easy (the

⋆ Research supported in part by NSERC (Natural Sciences and Engineering Research
Council of Canada) and MITACS (Mathematics of Information Technology and
Complex Systems) grants.

⋆⋆ Work done partly while visiting Carleton University (April - May 2005). Research
supported in part by NSERC grant and by PYTHAGORAS project 70/3/7392 under
the EPEAEK program of the Greek Ministry of Educational and Religious Affairs.

two agents can move to a node with a specific label). However even in that
case the agents need enough memory in order to remember and distinguish
node labels. Symmetry in the rendezvous problem is usually broken by using
randomized algorithms or by having the mobile agents use different deterministic
algorithms. (See the surveys by Alpern [1] and [2], as well as the recent book
by Alpern and Gal [3]). Yu and Yung [13] prove that the rendezvous problem
cannot be solved on a general graph as long as the mobile agents use the same
deterministic algorithm. While Baston and Gal [5] mark the starting points of
the agents, they still rely on randomized algorithms or different deterministic
algorithms to solve the rendezvous problem.

Research has focused on the power, memory and knowledge the agents need,
to rendezvous in a network. In particular what is the ‘weakest’ possible condition
which makes rendezvous possible? For example Yu and Yung [13] have consid-
ered attaching unique identifiers to the agents while Dessmark, Fraigniaud and
Pelc [6] added unbounded memory; note that having different identities allows
each agent to execute a different algorithm. Other researchers (Barriere et al [4]
and Dobrev et al [7]) have given the agents the ability to leave notes in each
node they visit. In another approach each agent has a stationary token placed
at the initial position of the agent. This model is much less powerful than dis-
tinct identities or than the ability to write in every node. Assuming that the
agents have enough memory, the tokens can be used to break symmetries. This
is the approach introduced in [11] and studied in Kranakis et al [10] and Floc-
chini et al [8] for the ring topology. In particular the authors proved in [10] that
two agents with one unmovable token each in a synchronous, n-node oriented
ring need at least Ω(log log n) memory in order to do rendezvous with detection.
They also proved that if the token is movable then rendezvous without detection
is possible with constant memory.

We are interested here in the following scenario: there are two identical agents
running the same deterministic algorithm in an anonymous oriented torus. In
particular we are interested in answering the following questions. What memory
do the agents need to solve rendezvous using unmovable tokens? What is the
situation if they can move the tokens? What is the tradeoff between memory
and the number of tokens?

1.1 Model and Terminology

Our model consists of two identical mobile agents that are placed in an anony-
mous, synchronous and oriented torus. The torus consists of n rings and each
of these rings consists of m nodes. Since the torus is oriented we can say that
it consists of n vertical rings. A horizontal ring of the torus consists of n nodes
while a vertical ring consists of m nodes. We call such a torus a n×m torus. The
mobile agents share a common orientation of the torus, i.e., they agree on any
direction (clockwise vertical or horizontal). Each mobile agent owns a number
of identical tokens, i.e. the tokens are indistinguishable. A token or an agent
at a given node is visible to all agents on the same node, but is not visible to

any other agents. The agents follow the same deterministic algorithm and begin
execution at the same time.

At any single time unit, the mobile agent occupies a node of the torus and
may 1) stay there or move to an adjacent node, 2) detect the presence of one or
more tokens at the node it is occupying and 3) release/take one or more tokens
to/from the node it is occupying. We call a token movable if it can be moved
by any mobile agent to any node of the network, otherwise we call the token
unmovable in the sense that it can occupy only the node in which it has been
released.

More formally we consider a mobile agent as a finite Moore automaton4

A = (X, Y,S, δ, λ, S0), where X ⊆ D × Cv × CMA, Y ⊆ D × {drop, take}, S
is a set of σ states among which there is a specified state S0 called the initial
state, δ : S × X → S, and λ : S → Y . D is the set of possible directions that
an agent could follow in the torus. Since the torus is oriented, the direction port
labels are globally consistent. We assume labels up, down, left, right. There-
fore D = {up, down, left, right, stay} (stay represents the situation where the
agent does not move). Cv = {agent, token, empty} is the set of possible configu-
rations of a node (if there is an agent and a token in a node then its configuration
is agent). Finally, CMA = {token, no− token} is the set of possible configura-
tions of the agent according to whether it carries a token or not.

Initially the agent is at some node u0 in the initial state S0 ∈ S. S0 determines
an action (drop token or nothing) and a direction by which the agent leaves u0,
λ(S0) ∈ Y . When incoming to a node v, the behavior of the agent is as follows.
It reads the direction i of the port through which it entered v, the configuration
cv ∈ Cv of node v (i.e., whether there is a token or an agent in v) and of course
the configuration cMA ∈ CMA of the agent itself (i.e., whether the agent carries
a token or not). The triple (i, cv, cMA) ∈ X is an input symbol that causes the
transition from state S to state S′ = δ(S, (i, cv, cMA)). S′ determines an action
(such as release or take a token or nothing) and a port direction λ(S′), by which
the agent leaves v. The agent continues moving in this way, possibly infinitely.

We assume that the memory required by an agent is at least proportional to
the number of bits required to encode its state which we take to be Θ(log(|S|))
bits. Memory permitting, an agent can count the number of nodes between
tokens, or the total number of nodes of the torus, etc. In addition, an agent
might already know the number of nodes of the torus, or some other network
parameter such as a relation between n and m. Since the agents are identical
they face the same limitations on their knowledge of the network.

Let U = {(n1/2, 0, ..., 0), (0, n2/2, ..., 0), ..., (0, 0, ..., nd/2)}, where each ni is
even, be a set consisting of d vectors in d-dimension. The distance between two
nodes on a d-dimensional torus is a d-vector the ith of element of which is
min{(xi − yi), (ni + yi − xi)} where wlog xi ≥ yi are the ith co-ordinates of the
nodes.

4 The first known algorithm designed for graph exploration by a mobile agent, modeled
as a finite automaton, was introduced by Shannon [12] in 1951.

Theorem 1. Consider two agents placed in a d-dimensional oriented torus (n1×
n2 × · · · × nd) so that their distance is the sum of vectors contained in any
nonempty subset S of U. Assume that for any non-zero element of the distance,
the number of nodes of that dimension of the torus is even. Then, no matter
how many tokens or how much memory the agents have, it is impossible for the
agents to rendezvous.

Corollary 1. Two agents placed in a n×m torus are incapable of meeting each
other (no matter how many tokens, movable or unmovable they have) if their
initial distance is either (n/2, 0) or (0, m/2) or (n/2, m/2).

Theorem 1 is a generalization of Theorem 1 in [10] which states that it is im-
possible for two agents equipped with one unmovable token each, to rendezvous
in a ring with n nodes if their initial distance is n/2, where n is even.

Definition 1. We call rendezvous with detection (RVD) the problem in which
the agents meet each other if their distance is not the sum of vectors contained
in any nonempty subset S of U, otherwise they stop moving and declare that is
impossible to meet each other.

We say that an algorithm A solves RVD (or is an RVD algorithm) if the
agents rendezvous when their initial distance is not the sum of vectors contained
in any nonempty subset S of U . If, the distance is indeed the sum of vectors
contained in a subset S of U then A halts after a finite number of steps and the
agents declare that rendezvous is impossible.

Definition 2. We call rendezvous without detection (RV) the problem in which
the agents meet each other if their distance is not the sum of vectors contained
in any nonempty subset S of U.

Therefore we say that an algorithm A solves RV (or is an RV algorithm)
if the agents rendezvous when their initial distance is not the sum of vectors
contained in any nonempty subset S of U. If, however, the distance is indeed the
sum of vectors contained in a subset S of U then A may run forever.

We assume that at any single time unit an agent can traverse one edge of
the network or wait at a node (we assume that taking or leaving a token can be
done instantly). For a given torus G and starting positions s, s′ of the agents
we define as cost CTRV D(A, G, s, s′) of an RVD algorithm A, the maximum time
(number of steps plus waiting time) needed either to rendezvous or to decide
that rendezvous is impossible. The cost CTRV (A′, G, s, s′) of an RV algorithm
A′, is the time needed to rendezvous (when it is possible of course). Finally, the
time complexity of an RVD or RV algorithm is its maximum cost overall possible
starting positions of the agents.

1.2 Our Results

In the study of the rendezvous problem this paper shows that there is a striking
computational difference between one and more tokens. More specifically, we
show that

1. Two agents with a constant number of unmovable tokens each cannot ren-
dezvous if they have o(log n) memory.

2. Two agents with one movable token each cannot rendezvous if they have
o(log n) memory.

3. Two agents with one unmovable token each can perform rendezvous with
detection as long as they have O(log n) memory.

4. When two agents have two movable tokens each then rendezvous (respec-
tively, rendezvous with detection) is possible with constant memory in an
arbitrary n × m (respectively, n × n) torus.

5. Two agents with three movable tokens each and constant memory can per-
form rendezvous with detection in an arbitrary n × m torus.

This is the first publication in the literature that studies tradeoffs between the
number of tokens, memory and knowledge the agents need in order to meet in
such a network.

1.3 Outline of the Paper

In Section 2 we first give some preliminary results concerning possible ways that
an agent can move in a torus using either no tokens or a constant number of
unmovable tokens. Then we prove that rendezvous without detection in a torus
cannot be solved by two agents with one movable token each, or with a constant
number of unmovable tokens unless their memory is Ω(log n) bits.

In Section 3 we give an algorithm for rendezvous with detection in a n × n
torus using one unmovable token and O(log n) memory. We also give an algo-
rithm for rendezvous with detection in a n × n torus using two movable tokens
and constant memory. Next we give an algorithm for rendezvous without detec-
tion in an arbitrary n×m torus using two movable tokens and constant memory,
stating the relation that m and n must have in order to do rendezvous with detec-
tion following that algorithm. Finally we give an algorithm for rendezvous with
detection in a n × m torus using three movable tokens and constant memory.

In Section 4 we discuss the results and state some open problems. Due to
space limitations, the proofs, formal algorithms and figures have been omitted
in this extended abstract.

2 Memory Lower Bounds of Rendezvous

2.1 Preliminary Results

Lemma 1. Consider one mobile agent with σ states and no tokens. We can
always (for any configuration of the automaton, i.e. states and transition func-
tion) select a n × n oriented torus, where n = Ω(σ) so that no matter what is
the starting position of the agent, it cannot visit all nodes of the torus. In fact,
the agent will visit at most (σ + 1)n nodes.

Lemma 2. Consider one mobile agent with σ states and one unmovable token.
We can always (for any configuration of the automaton, i.e. states and transition
function) select an oriented n×n torus, where n = Ω(σ2) so that no matter what
is the starting position of the agent, it cannot visit all nodes of the torus. In fact,
the agent will visit at most (σ + 1)(1 + σn) = O(σ2n) nodes.

Theorem 2. Consider one mobile agent with σ states and a constant number
of identical unmovable tokens. We can always (for any configuration of the au-
tomaton, i.e. states and transition function) select a n×n oriented torus, where
n = Ω(σ2) so that no matter what is the starting position of the agent, it cannot
visit all nodes of the torus. In fact, the agent will visit at most O(σ2n) nodes.

2.2 An Ω(log n) Memory Lower Bound for Rendezvous Using One
Movable Token

Lemma 3. Consider two mobile agents with σ states. They each have a token
(identical to each other). Then we can always (for any configuration of the au-
tomatons, i.e. states and transition function) find an oriented n×n torus, where
n = Ω(σ2) and place the agents so that if they can not move tokens then they
cannot rendezvous.

Proof. (Sketch) We place the first agent A in a node. If A can meet only its
token, then by Lemma 2, the agent would visit at most (σ + 1)(1 + σn) nodes
before it repeats everything. We prove that we can initially choose a node to
place the other agent B so that anyone’s token is out of reach of the other. In
other words we place the second agent B so that

– it releases its token tB at a node different from at most (σ+1)(1+σn) nodes
visited by the first agent A and

– to avoid to visit the node where the first agent A released its token tA

2

Notice that in the previous scenario, where the two agents cannot move the
tokens, there are still unvisited nodes (from the same agent) in the torus. In fact
we proved Lemma 3 by describing a way to ‘hide’ token tA in a node not visited
by agent B and token tB in a node not visited by agent A.

If there are two starting nodes s, s′ for the agents A and B so that agent A
drops its token tA in a node not visited by agent B and agent B drops its token
tB in a node not visited by agent A then we say that s, s′ satisfy property π.

If the agents could move tokens, then it is easy to think of an algorithm
where all nodes of any torus are visited by the same agent. For example consider
the following algorithm:

- 1: go right until you meet the second token;
- 2: move the token down;
- 3: repeat from step 1;
Nevertheless the goal is again to place the agents in a way that they could

meet only their own token. To achieve this we place the agents so that in a phase

which starts when the agents move their tokens, up to the moment that they
move their tokens again they do not meet each other’s token.

Lemma 4. Consider two mobile agents with σ states. They each have a token
(identical to each other). Then we can always (for any configuration of the au-
tomatons, i.e. states and transition function) find an oriented n×n torus, where
n > 8σ3 = Ω(σ3) and place the agents so that even if they can move tokens they
cannot rendezvous.

This implies the following theorem:

Theorem 3. Two agents in a n×n torus with one movable token need at least
Ω(log n) memory to solve the RV problem.

Proof. Suppose that the agents have a memory of r bits. Hence they can have
at most 2r states. By Lemma 4 as long as n > 8σ3 the agents cannot perform
rendezvous. Hence, the agents need at least r = Ω(log n) memory in order to
perform rendezvous. 2

2.3 An Ω(log n) Memory Lower Bound for Rendezvous Using O(1)
Unmovable Tokens

Lemma 5. Consider two mobile agents with σ states. They each have two to-
kens (identical to each other). Then we can always (for any configuration of
the automatons, i.e. states and transition function) find a n × n oriented torus,
where n = Ω(σ2) and place the agents so that if they cannot move tokens they
cannot rendezvous.

Proof. (Sketch) In view of Lemmas 2, 3 we can select the torus and the starting
positions so that an agent will visit at most (σ+1)(1+σn) nodes until it decides
to release its second token and up to that point does not meet the other’s token.
Its second token will have to be released at a ‘short’ distance from the first one
since an agent cannot count more than σ. Using similar arguments as in the
proof of Lemma 3 one can show that there are at least n2 − 5(σ + 1)(1 + σn)
pairs of starting nodes that satisfy property π. 2

This implies the following theorem:

Theorem 4. Two agents in a n × n torus with two identical unmovable tokens
each, need at least Ω(log n) memory to solve the RV problem.

Applying similar arguments we can prove the following lemma and theorem:

Lemma 6. Consider two mobile agents with σ states. They each have a constant
number of k identical tokens. Then we can always (for any configuration of the
automatons, i.e. states and transition function) find an oriented n × n torus,
where n = Ω(σ2) and place the agents so that if they cannot move tokens they
cannot rendezvous.

Proof. (Sketch) Using similar arguments as in the proof of Lemma 3 one can

show that there are at least n2 − k(k+2)
2 (σ + 1)(1 + σn) pairs of starting nodes

that satisfy property π. 2

Theorem 5. Two agents in a n×n torus with a constant number of unmovable
tokens need at least Ω(log n) memory to solve RV problem.

3 Rendezvous

3.1 Rendezvous with Detection (RVD) in a n × n Torus Using One
Token and O(log n) Memory

We describe an algorithm which solves the RVD problem of two agents in a n×n
torus, equipped with one unmovable token and O(log n) memory each. Below is
a high level description of the algorithm.

First the agent (both agents run the same algorithm) moves in the initial hor-
izontal ring; it releases its token and it counts steps until it meets a token twice.
If its counters differ, then it can meet the other agent. Otherwise it does the same
in the initial vertical ring. If it does not meet the other or decide that rendezvous
is impossible (which means that the agents must have started in different rings),
then it searches one by one the horizontal rings of the torus counting its steps. If
at least one of its counters (representing horizontal or vertical distances) is dif-
ferent than n/2 then it can meet the other agent. Otherwise it stops and declares
rendezvous impossible. The formal description of the algorithm will appear in
the full version of the paper.

Theorem 6. The Rendezvous with Detection problem on a n × n torus can be
solved by two agents using one unmovable token and O(log n) memory each, in
time O(n2).

The above result can be extended for the case of an arbitrary n × m torus.
The main difference in that case is how the agents decide if they have started
on the same ring or not: they again explore one by one the horizontal rings.
They will meet a token while going down (passing from one horizontal ring to
the next) if and only if they have started on the same ring. Otherwise, they will
meet a token while going right (before finishing the exploration of a horizontal
ring). They can solve the Rendezvous with Detection problem in O(nm) steps
as long as they have O(log n + log m) memory each.

3.2 Rendezvous with Detection in a n × n Torus Using Two
Movable Tokens and Constant Memory

We define Procedure HorScan which will be used in our algorithms.
In this procedure the agent stops immediately after it meets a token. So for

example, if after it goes right it meets a token then it stops immediately; it does
not go up.

Procedure HorScan

1: repeat

2: go down, right, up
3: until you meet a token

Procedure FindTokenHor

1: repeat

2: HorScan
3: if you meet token up then

4: HorScan
5: go one step down and drop (or move) the second token
6: end if

7: until you meet a token down or right

We also use Procedure FindTokenHor.
An agent following Procedure FindTokenHor, scans one by one the horizontal

rings of the torus until it meets a token while moving down or right. Below we
explain procedure FindTokenHor and prove some of its properties.

Let the agents release their first token and execute procedure FindTokenHor.
During execution of HorScan (step 2 of Procedure FindTokenHor), the agent has
to meet a token for the first time either after it moved down in the first step, or
up or right (he can not meet a token while going down at a later step of Horscan
since it would have met the token while going right earlier).

If it meets a token after it moved up, then this can be any token: its or
the other’s first token (or its or the other’s second token when it scans a later
horizontal ring). However, if it executes Horscan again (step 4 of Procedure
FindTokenHor), then no matter what was the case, it is easy to see that the first
token it meets now is its token (first or second) and it meets it after it moved
up5. Furthermore in this case it is sure that the down ring had no tokens.

If it meets a token right then it is clear that it is the other’s first token and
that the two agents have started in different rings.

If it meets a token while it goes down then either it is its first token or the
other’s first token. In both cases this means that they have started in the same
ring: if it is its first token it means that it has searched the whole torus and did
not meet any other token while it was moving right.

Therefore the agent exits procedure FindTokenHor knowing that it has started
either in the same ring with the other agent (if it met a token after it moved
down) or in different rings (if it met a token after it moved right). Procedure
FindTokenHor needs O(n2) time units.

Below is a high level description of the algorithm RVD2n which solves the
RVD problem in a n×n torus. The two agents search one by one the horizontal
rings of the torus (using Procedure FindTokenHor) to discover whether they have
started in the same ring. If so, then they execute a procedure which appeared

5 Supposing that there are at most two tokens in the same horizontal ring.

in [9], for rendezvous with detection in a ring using two tokens and constant
memory. Otherwise they try to ‘catch’ each other on the torus using a path,
marked by their tokens. If they do not rendezvous then they search one by one
the vertical rings of the torus (using a procedure similar to FindTokenHor for
searching one by one the vertical rings). They again try to ‘catch’ each other on
the torus. If they do not meet this time they declare rendezvous impossible. The
algorithm takes O(n2) time.

Theorem 7. The Rendezvous with Detection problem on a n × n torus can be
solved by two agents using two movable tokens and constant memory each, in
time O(n2).

Another possible algorithm could be if after discovering that the agents
started on different rings, first to search whether they are at distance (n/2, n/2)
and if not, then searching one by one the horizontal rings of the torus. We have
chosen to present here the first approach since it is expandable to a n×m torus.

3.3 Rendezvous without Detection in a n × m Torus Using Two
Movable Tokens and Constant Memory

We give now algorithm RV2mn which is a RV algorithm for two agents with
constant memory in a n×m torus. Algorithm RV2mn, at first, copies algorithm
RVD2n. If no rendezvous occurs and no decision is made about its impossibility
(i.e. the agents have started in different rings), the algorithm instructs the agents
to mark a rectangle with their tokens on the torus and then execute Procedure
Pendulum: they try to shrink the rectangle and eventually meet which will hap-
pen unless they had started at distance (n/2, m/2) (in that case the algorithm
runs forever).

In fact one of the following things could happen: either the agents rendezvous,
or they detect that they are in the same ring and their distance is half the size
of the ring or the algorithm runs forever (in that case they are at horizontal
distance n/2 and vertical distance m/2). Algorithm RV2mn needs O(n4 + m4)
time.

Theorem 8. The Rendezvous without Detection problem on an arbitrary n×m
torus can be solved by two agents using two movable tokens and constant memory
each, in time O(n4 + m4).

An interesting question which naturally follows is: what is the relation of n
and m for which algorithm RV2mn is indeed a RVD algorithm? The answer is
given by the following lemma.

Lemma 7. If after the horizontal and vertical scanning of Algorithm RV2mn
the agents do not rendezvous and n−1

10 ≤ m ≤ 2n + 17 then their distance is
(n/2, m/2) and therefore rendezvous is impossible.

Hence by Lemma 7 if we knew that n−1
10 ≤ m ≤ 2n + 17 then algorithm

RV2mn would be a RVD algorithm for the n × m torus.

3.4 Rendezvous with Detection in a n × m Torus Using Three
Movable Tokens and Constant Memory

If the agents have 3 tokens then we can extend our RVD2n algorithm to get a
RVD algorithm for a n×m torus. The idea is the following: If the agents do not
meet while they copy Algorithm RVD2n then they mark a rectangle on the torus
using their two tokens each. Next they release their third token to the right of
their starting position. They travel on this rectangle (one agent from inside and
the other from outside), each time moving one step the fifth token they meet:
first they move it to the right until it hits another token and then down until it
touches a token. Next they go left until they meet a token and then up until they
meet a token. If at that point they see two tokens adjacent then they declare
rendezvous impossible. Otherwise they wait until rendezvous which will occur in
less than n + m time. Algorithm RVD3mn takes O(n2 + m2) time.

Theorem 9. The Rendezvous with Detection problem on an arbitrary n × m
torus can be solved by two agents using three movable tokens and constant mem-
ory each, in time O(n2 + m2).

4 Conclusions

In this paper we investigated on the number of tokens and memory that two
agents need in order to rendezvous in an anonymous oriented torus.

It appears that there is a strict hierarchy on the power of tokens and memory
with respect to rendezvous: a constant number of unmovable tokens are less
powerful than two movable tokens. While the hierarchy collapses on three tokens
(we gave an algorithm for rendezvous with detection in a n×m torus when the
agents have constant memory each), it remains an open question if three tokens
are strictly more powerful than two with respect to rendezvous with detection.

It is also interesting that although a movable token is more powerful than
an unmovable one (we showed that an agent with one unmovable token cannot
visit all the nodes of a torus with a properly selected size unless it has Ω(log n)
memory, while it could do it with a constant memory if it could move its token)
it appears that this power is not enough with respect to rendezvous; the agents
with one movable token each, still require Ω(log n) memory to rendezvous in the
torus.

As this is the first publication in the literature that studies tradeoffs between
the number of tokens, memory, knowledge and power the agents need in order
to meet on a torus network, a lot of interesting questions remain open:

- Can we improve the time complexity for rendezvous without detection on
a n×m torus using constant memory? Can we improve the time complexity for
rendezvous with detection on a n × n torus using constant memory?

- What is the lower memory bound for two agents with two movable tokens
each in order to do rendezvous with detection in a n × m torus? In particular,
can they do it with constant memory?

- What is the situation in a d-dimensional torus? Is it the case that with
d− 1 movable tokens, rendezvous needs Ω(log n) memory while with d movable
tokens and constant memory rendezvous with detection can be done? How does
this change if the size of the torus is not the same in every dimension?

- What are the results if the torus is not oriented? If the torus is asyn-
chronous?

- Finally, an interesting problem is that of many agents trying to rendezvous
(or gathering) in a torus network.

References

1. S. Alpern, The Rendezvous Search Problem, SIAM Journal of Control and Opti-
mization, 33, pp. 673-683, 1995. (Earlier version: LSE CDAM Research Report,
53, 1993.)

2. S. Alpern, Rendezvous Search: A Personal Perspective, Operations Research, 50,
No. 5, pp. 772-795, 2002.

3. S. Alpern and S. Gal, The Theory of Search Games and Rendezvous, Kluwer
Academic Publishers, Norwell, Massachusetts, 2003.

4. L. Barriere, P. Flocchini, P. Fraigniaud, and N. Santoro, Election and Rendezvous
of Anonymous Mobile Agents in Anonymous Networks with Sense of Direction,
Proceedings of the 9th International Colloquium on Structural Information and
Communication Complexity (SIROCCO), pp. 17-32, 2003.

5. V. Baston and S. Gal, Rendezvous Search When Marks Are Left at the Starting
Points, Naval Research Logistics, 47, No. 6, pp. 722-731, 2001.

6. A. Dessmark, P. Fraigniaud, and A. Pelc, Deterministic Rendezvous in Graphs,
11th Annual European Symposium on Algorithms (ESA), pp. 184-195, 2003.

7. S. Dobrev, P. Flocchini, G. Prencipe, and N. Santoro, Multiple agents rendezvous
in a ring in spite of a black hole, Symposium on Principles of Distributed Systems
(OPODIS ’03), LNCS 3144, pp. 34-46, 2004.

8. P. Flocchini, E. Kranakis, D. Krizanc, N. Santoro, and C. Sawchuk, Multiple Mobile
Agent Rendezvous in the Ring, LATIN 2004, LNCS 2976, pp. 599-608, 2004.

9. L. Gasieniec, E. Kranakis, D. Krizanc, X. Zhang, Optimal Memory Rendezvous of
Anonymous Mobile Agents in a Uni-directional Ring. In proceedings of SOFSEM
2006, 32nd International Conference on Current Trends in Theory and Practice of
Computer Science January 21 - 27, 2006 Merin, Czech Republic, SVLNCS, 2006,
to appear.

10. E. Kranakis, D. Krizanc, N. Santoro, and C. Sawchuk, Mobile Agent Rendezvous
Search Problem in the Ring, International Conference on Distributed Computing
Systems (ICDCS), pp. 592-599, 2003.

11. C. Sawchuk, Mobile Agent Rendezvous in the Ring, PhD thesis, Carleton Univer-
sity, School of Computer Science, Ottawa, Canada, 2004.

12. CL. E. Shannon, Presentation of a Maze-Solving Machine, in 8th Conf. of the
Josiah Macy Jr. Found. (Cybernetics), pp. 173-180, 1951.

13. X. Yu and M. Yung, Agent Rendezvous: A Dynamic Symmetry-Breaking Problem,
in Proceedings of ICALP ’96, LNCS 1099, pp. 610-621, 1996.

