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Abstract

In the art gallery problem the goal is to place guards (as few as possible) in a
polygon so that a maximal area of the polygon is covered. We address here a closely
related problem: how to place paintings and guards in an art gallery so that the total
value of guarded paintings is a maximum. More formally, a simple polygon is given
along with a set of paintings. Each painting, has a length and a value. We study
how to place at the same time: i) a given number of guards on the boundary of the
polygon and ii) paintings on the boundary of the polygon so that the total value of
guarded paintings is maximum. We investigate this problem for a number of cases
depending on: i) where the guards can be placed (vertices, edges), ii) whether the
polygon has holes or not and iii) whether the goal is to oversee the placed paintings
(every point of a painting is seen by at least one guard), or to watch the placed
paintings (at least one point of a painting is seen by at least one guard). We prove
that the problem is NP-hard in all the above cases and we present polynomial time
approximation algorithms for all cases, achieving constant ratios.

Keywords: Visibility, Computational Geometry, Approximation Algorithms.
Designated Track: Research Paper.

1 Introduction

In the Art Gallery problem, a polygon is given and the goal is to place as few as possible
guards in the polygon, so that a maximal area of the polygon is covered. This is a well
known problem having the variation where a number of guards is given and the goal is to
cover as many points in the polygon as possible. More variations arise when the polygon
has holes and the points that must be covered lie in general on the boundary of the
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polygon and of its holes. On the other hand guards may be realized as vertices (vertex
guards) or whole edges (edge guards) of the polygon ([2, 4, 5]).

We address here a closely related problem: how to place exhibits like paintings and
guards in an art gallery so that the total value of guarded paintings is a maximum. More
formally, a polygon is given along with a set of paintings. Each painting has a length
and a value. We study how to place simultaneously a given number of guards and the
paintings on the boundary of the polygon so that the total value of guarded paintings is
maximum.

Some related problems that have been studied: MINIMUM VERTEX/EDGE/POINT
GUARD for polygons with (without) holes (known to be APX-hard and O(logn) approx-
imable [1, 6, 7]), MINIMUM FIXED HEIGHT VERTEX/POINT GUARD ON TERRAIN (best
approximation possible f(logn) [6, 7, 8]), MAXIMUM WEIGHTED CLIQUE ON VISIBILITY
GRAPH (known to be in P [11, 12, 13]), MINIMUM CLIQUE PARTITION ON VISIBILITY
GRAPH for polygons without holes (known to be APX-hard and O(logn) approximable
[6]). We prove that our problem is NP-hard and give polynomial time algorithms achieving
a constant approximation ratio, based on a well known greedy algorithm which approxi-
mates the MAXIMUM COVERAGE problem (]9, 10]).

The remainder of this paper is organized as follows: In section 2 we define the Finest
Visibility Segmentation (FVS) of a polygon and settle that this construction is the finest
relevant segmentation with respect to visibility: a FVS segment cannot be only partly
visible from a vertex or an edge. In section 3 we define the MAXIMUM VALUE VERTEX
GUARD WITH PAINTING PLACEMENT problem and prove that the problem is NP-hard.
We present a polynomial time algorithm that achieves a constant approximation ratio
and extend the result for edge guards and polygons with holes. Finally, in section 4 we
present the conclusion.

2 Finest Visibility Segmentation

We start with some preliminary definitions (see figure 1). Let P be a polygon, a,b € P
two points inside P and L, M C P two sets of points inside P. We say that point a sees
point b, i.e. a and b are mutually visible, if the straight line segment connecting a and b
lies everywhere inside P. Notice that if point a sees point b then also point b sees point
a. We say that the point set L is visible from the point set M or that M oversees L if for
all points that belong to L, there exist a point that belongs to M, such that the points
are mutually visible. Notice that if M oversees L, it is not necessary for L to oversee M.
Finally, we say that M watches L if there exist a point that belongs to L and a point that
belongs to M such that the points are mutually visible. Notice that if M watches L then
also L watches M.

We are going to describe a method that descritizes the boundary as well as the interior
of any polygon in terms of visibility. Assume any polygon P and the corresponding
visibility graph Vi (P): the visibility graph’s vertex set is the vertex set of the polygon
and two vertices share an edge in the visibility graph if and only if they are mutually
visible in the polygon. By extending the edges of Vi (P) inside P up to the boundary of
P, see figure 2(a), we obtain a set of points F'VS of the boundary of P, see figure 2(b),
that includes of course all vertices of P. An extended edge of Vi (P) generates at most
two FVS points and there are O(n?) edges in Vg (P), so there are O(n?) points in any
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Figure 1: Guards v and u are not mutually visible, guard v oversees edge E and guard u
watches edge J.

polygon’s F'VS set. We call this construction the Finest Visibility Segmentation of the
polygon P. Any open segment (a,b), i.e. a and b are excluded, defined by consecutive
FVS points, is called an F'VS segment of P. The following two lemmas settle that a F'VS
segment cannot be only partly visible from a vertex or an edge.

N

(a) (b)

Figure 2: Discretizing the boundary of a polygon

Lemma 1 For any vertex v of the polygon P, an open segment (a,b) defined by consec-
utive F'VS points a, b, is visible by v if and only if it is watched by v.

Proof. Of course if (a,b) is visible from v, then it is watched by v. Suppose now that
(a,b) is watched by v but not overseen by v. Without loss of generality assume that v
sees only (¢, d) and cannot see any point between a and ¢, as well as, cannot see any point
between d and b, see figure 3(a). So there must be an edge with endpoint vertex u that
blocks v’s visibility left of ¢ and another vertex w that blocks v’s visibility right of d that
is vu, vw € Vg(P). The extensions of vu and vw meet the boundary at ¢, d respectively,
hence ¢,d € FVS. So a, b cannot be consecutive F'VS points. O

Lemma 2 For any edge e of the polygon P, an open segment (a,b) defined by consecutive
FVS points a, b, is visible by e if and only if it is watched by e.



Figure 3: Any vertex (edge) oversees a F'VS segment if and only if watches the segment

Proof. Of course if (a,b) is visible from e, then it is watched by e. Suppose now that
(a,b) is watched by e = (v;,v;) but not overseen by e. The fact that e watches (a,b)
implies that there exist a point ¢ € (a,b) and a point d € e such that the line segment
cd is everywhere inside the polygon, see figure 3(b). Start now an angular sweep of the
line that passes through ¢ and d, around d. If the sweep reaches b we have overseen all
the cb segment, otherwise we stop at the vertex that belongs to the first edge that blocks
d’s visibility to (a,b) (vertex v,, in figure 3(b)). So point d oversees the ce segment and
in order to see further towards b we have to consider points right of d. We start a new
angular sweep of the line that passes through e and d, around wv,,, that passes through
different positions d’ left of d. Consider the following cases:

e The sweep reaches b so we have overseen all of the cd segment.

e The sweep stops at the vertex that belongs to the first edge that blocks d’’s visibility
to (a,b) (vertex v, or v/, in figure 3(b)). This means that there is a line segment
that starts from d’ passes through the v,, and v, (or v),) vertices and is everywhere
inside P. The latter means that v,,v, € Vg(P) and v,,v,,’s extension intersects P’s

boundary to f, hence f is a F'VS point left of b, so a and b cannot be consecutive
FVS points.

e The sweep reaches v; but not b. This means that there is a line segment that starts
from v; passes through v,,, intersects (a, b) at f and is everywhere inside the polygon
P. But the latter means that v;v,, is an edge of the visibility graph Vg (P) and its
extension intersects the boundary of P to point f, hence f is a F'VS point left of b.
So a and b cannot be consecutive F'VS points.

Using the exact reasoning we can prove that e oversees also the ac segment. O
The above lemmas settle the following:
Theorem 1 The boundary of any polygon P can be effectively descritized in terms of

visibility to O(n?) FVS segments. Any vertex (edge) of P sees a FVS segment if and only
if watches the F'VS segment.



In order to find the set of all overseen F'VS segments from a polygon vertex v, namely
the F'VS(v) set, (using lemma 1) it suffices to pick an arbitrary point p in every FVS
segment. For every selection of p we have to check if vp is everywhere inside the polygon
P. If this is the case, we augment the F'VS(v) set with the relative FVS segment. Notice
that the segment inclusion in the polygon can be effectively checked in polynomial time
by simple orientation tests, hence the construction of the FVS(v) set costs polynomial
time.

For the case of the F'VS(e) set, that is the set of all overseen FVS segments from a
polygon edge e, (using lemma 2) it suffices to pick an arbitrary point p in every FVS
segment and check if there exists a point p’ € e such that pp’ is everywhere inside P. This
can be done by an angular sweep manner around p, stopping at the polygon vertices. If
there exists a vertex v; (possibly an endpoint of ) such that the extension of pv; intersects
e to p/, we augment the F'VS(e) set with the relative FVS segment. Notice that again
the construction of the F'VS(e) set costs polynomial time.

3 The MAXIMUM VALUE VERTEX GUARD WITH PAINT-
ING PLACEMENT problem

Given is a polygon P, a set of ordered pairs (z,y) and an integer £ > 0. The boundary
of the polygon models the walls of an art gallery while an ordered pair (x,y) represents
a painting with length x and value y. The goal of the MAXIMUM VALUE VERTEX
GUARD WITH PAINTING PLACEMENT problem is to place k vertex guards as well as
place paintings on the boundary of P so that the total weight of the overseen paintings
is maximum. Notice that in the given set of paintings {(z1,v1),..., (zi,¥;)}, there is an
unlimited number of paintings of length x; and value y;. Another restriction is that if
there is an area on the boundary overseen by at least two guards, then all paintings that
have their parts in this area should be overseen by the same guard. We call this problem
MAXIMUM VALUE VERTEX GUARD WITH PAINTING PLACEMENT. In the following we
prove that it is NP-hard to place guards on the vertices (at most k) and paintings from
the given set with respect to the above restriction so that the total value of the overseen
paintings is maximum.

Figure 4: A possible placement of paintings on the walls of the art gallery (zero value
means that there is no painting placed).



Proposition 1 Consider a polygon P along with a set of paintings (each painting has
a length and a value assigned) and integers k,V > 0. It is NP-hard to decide whether
we can place at most k guards on vertices of P and paintings on the walls of the gallery
(boundary of P) so that the total value of overseen paintings is at least V.

Proof. The decision version of MINIMUM VERTEX GUARD for a polygon P reduces to the
corresponding decision version of MAXIMUM VALUE VERTEX GUARD WITH PAINTING
PLACEMENT. We construct an instance of the last problem as follows: We take the same
polygon P. We construct the F'VS, i.e. the finest line segment subdivision of the edges
of P, and take a painting for each F'VS segment with length the length of the segment
and value also the length of the segment. Finally we take as V' the total sum of values of
the segments. Now the truth of the proposition is straightforward. O

Algorithm 1 is an approximation algorithm for the MAXIMUM VALUE VERTEX GUARD
WITH PAINTING PLACEMENT problem.

Algorithm 1 MaxValue VertexGuard WithPaintingPlacement (greedy)

1 compute the F'VS points

2 foreach v € V(P)

3 compute FVS(v)

4 SOL :=1)

5 for i :=1to k

6 select v € V that maximizes W (multknap(FVS(v)\ SOLN FVS(v), D))
7 update SOL

s return W (SOL)

In algorithm 1 we use the MULTIPLE KNAPSACK problem. This problem is known to
be NP-hard and there is a polynomial time 2-approximation algorithm for it ([3]). Actually
in [14] they proved that there is a PTAS for the MULTIPLE KNAPSACK problem.

Algorithm 1 starts by calculating the F'VS points and then for every v € V(P) the set
FVS(v). During each iteration of the algorithm, for any vertex v that hasn’t been assigned
a guard yet, the set FVS(v) — SOLN FVS(v) (of the visible segments not previously
overseen) is calculated. Then for every such set, the MULTIPLE KNAPSACK problem
is solved, taking as knapsacks the segments in the set (the capacity of a knapsack is
the length of the corresponding segment). The solution of the MULTIPLE KNAPSACK
problem results to a placement of paintings of a total maximum value in the knapsacks.
The vertex that maximizes the total value of the fitted paintings is then chosen, causing
an overall increase of 1 — ¢ of the maximum possible increase of the solution, due to the
PTAS of the MULTIPLE KNAPSACK problem. Then the algorithm updates the set SOL
by adding the new F'VS segments along with the fitted paintings.

In order to prove that algorithm 1 approximates MAXIMUM VALUE VERTEX (GUARD
WITH PAINTING PLACEMENT by a constant approximation factor, let OPT denote the
collection of the set of paintings in an optimal solution and SOL denote the collection
returned by the algorithm. These collections have W(OPT) and W (SOL) values respec-
tively. Suppose that the algorithm places a guard at vertex v; at iteration ¢, and a set of
new paintings P;. Therefore the added total value of paintings at iteration i is W (F;).



In the ordered sequence of vertices (as they have been selected by the algorithm),
consider the first vertex v; selected by the algorithm but not by the optimal solution for
placing a guard. In other words, let v; be the first vertex in the ordered sequence where
there is a guard placed by the algorithm but there is no guard in the optimal solution. It
holds:

W(F) = W(Uin:1P7n) - W(U;;:l1PM)

The PTAS for the MULTIPLE KNAPSACK problem implies:
W(PR) > aW(F),a >0

where W (P/) is the new total value overseen by a guard placed on v; in the optimal
solution. We settle the following lemmas:

Lemma 3 After [ iterations of algorithm 1 the following holds:

W(U_ P) = W(UZP) > —(W(OPT) = W(UZiP)), 1=1,2,...k

> Q

Proof. Consider vertices where guards have been placed in the optimal solution but no
guard has been placed there by the algorithm. By the pigeonhole principle, there is at
least one such vertex v, so that the following holds:

W(OPT) — W(UZ P)

P>
UAE -

since W(P;) > aW (P}), it holds:

W(OPT) — W(UZ{ P)

P>
W(P,) 2 —

Notice that
W(PR) > W(Py,) > aW(P,,)
and
W(Ui, ) = W(UZ P) = W(PR) > aW (F))
Therefore:

W (Ui P) = W(UZLP) > —(W(OPT) = W(UZ, 7))

> Q

Lemma 4 After [ iterations of algorithm 1 it holds:

W(U_,P) > (1—(1— %)l)W(OPT), I=1,..k

Proof. We are going to prove this by induction on [ During the first step the algorithm
chooses the set with value W (Py). It holds:

W(P) > aW(P])



W (P)]) is the biggest possible value that OPT achieves, so from the pigeonhole principle:

PT
W(P)) > % —W(P) > %W(OPT)
Assume that the given holds for i =1 — 1:
W(UZIP) > (1- (1= 2)' )W (OPT)

So:
W (UL, B) = W(UZ{P) + (W(Ui_, P) — W(UZ{ P))

Using lemma 3:

W(U_,P) > W(UZIP) + Z(W(OPT) — W(UZLP)) —

K
W(U P) > W(UZ P (1 — %) + %W(OPT)

From the inductive hypothesis:

W(ULP) 2 (L= (1= )" YW(OPT)(1 = ) + TW(OPT) —
W(U_,P) > (1- (1= 2))W(OPT)

Theorem 2 Algorithm 1 runs in polynomial time and achieves an approzimation of 5

with respect to the optimum of the MAXIMUM VALUE VERTEX GUARD WITH PAINTING
PLACEMENT problem, where + = is the approximation ratio of MULTIPLE KNAPSACK.

Proof. Using lemma 4, we set [ = k and get:

W(ULP) 2 (1= (1= 2)")W(OPT)

It holds: .
a
lim(1—-(1—-)=1-—
Jim (1 (1= 9 =1
As (1 —(1—2)¥) continuously gets smaller, we have:
1
1—(1-Ske>1- =
( k) ev
So:

W(SOL) > (1 — eia)W(OPT)

That is the algorithm approximates the MAXIMUM VALUE VERTEX GUARD WITH PAINT-
ING PLACEMENT problem with a — ratio. Due to the existence of the PTAS for the

T e

MULTIPLE KNAPSACK problem, o — 1 so — — 1.58. O

PeY

Similar to proposition 1, for the case of edge guards, it holds:
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Proposition 2 The MAXIMUM VALUE EDGE GUARD WITH PAINTING PLACEMENT
problem is NP-hard.

Algorithm 2 approximates MAXIMUM VALUE EDGE GUARD WITH PAINTING PLACE-
MENT. The only difference from algorithm 1 is that we need to calculate the FVS(e) set
using the techniques described in section 2.

Algorithm 2 MazValueEdge Guard WithPaintingPlacement (greedy)

1 compute the F'VS points

2 foreach e € E(P)

3 compute F'VS(e)

4 SOL :=1)

5 for71:=1tok

6 select e € E that maximizes W (multknap(F'VS(e) \ SOLN FVS(e), D))
7 update D

8 return W(SOL)

Similar to theorem 2 it holds:

Theorem 3 Algorithm 2 runs in polynomial time and achieves an approximation of 1.58
for the MAXIMUM VALUE EDGE GUARD WITH PAINTING PLACEMENT problem.

Similar results apply also for the case of polygons with holes. Algorithms 1 and 2 can
be applied to polygons with holes, achieving the same approximation.

4 Conclusion

We investigated the MAXIMUM VALUE VERTEX GUARD WITH PAINTING PLACEMENT
problem: we proved NP-hardness and presented a polynomial time algorithm that achieves
a constant approximation ratio. The algorithm applies for a number of cases (edge guards,
polygons with holes) and achieves the same approximation. While investigating the above
problem we used a way to discretize the boundary of the polygon by subdividing it into
O(n?) pieces of the Finest Visibility Segmentation which is the finest releavant segmenta-
tion with respect to visibility: a F'VS segment cannot be only partly visible from a vertex
or an edge.
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