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Abstract. A black hole is a highly harmful stationary process residing node of a network and
destroying all mobile agents visiting the node, withouwleg any trace. We consider the task of
locating a black hole in a (partially) synchronous netwasgsuming an upper bound on the time of
any edge traversal by an agent. The minimum number of agapthte to identify a black hole is
two. For a given graph and given starting node we are ineddstthe fastest possible black hole
search by two agents, under the general scenario in which sabset of nodes is safe and the black
hole can be located in one of the remaining nodes. We showittagiroblem of finding the fastest
possible black hole search scheme by two agents is NP-haddyeagive a 9.3-approximation for it.
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1. Introduction

1.1. Thebackground and the problem

Security of mobile agents working in a network environmenam important issue which has recently
attracted attention of many researchers. Protecting malgints from “host attacks”, i.e., harmful items
stored in nodes of the network, has become almost as urgembtecting a host, i.e., a node of the
network, from an agent’s attack [12, 13]. Various methodgrofecting mobile agents against malicious
hosts have been discussed, e.g., in [7, 8, 10, 12, 13, 14].

In this paper we consider hostile hosts of a particularlyrtial nature, calledlack holeq1, 2, 3, 4,

5]. A black hole is a stationary process residing in a noderadtavork and destroying all mobile agents
visiting the node, without leaving any trace. Since ageatmot prevent being annihilated once they
visit a black hole, the only way of protection against suabcpsses is identifying the hostile node and
avoiding further visiting it. Hence we are dealing with tlssue of locating a black hole: assuming that
there is at most one black hole in the network, at least ongviug agent must find the location of the
black hole if it exists, or answer that there is no black hotberwise. The only way to locate the black
hole is to visit it by at least one agent, hence, as observEs],iat least two agents are necessary for one
of them to locate the black hole and survive. Throughout #Eepwe assume that the number of agents
is minimum possible for our task, i.e., 2, and that they gtarh the same node.

In [2, 3, 4, 5] the issue of efficient black hole search was msitely studied in many types of
networks. The underlying assumption in these papers washthaetwork is totally asynchronous, i.e.,
while every edge traversal by a mobile agent takes finite, tih@xe is no upper bound on this time. In this
setting it was observed that, in order to solve the problemnetwork must be 2-connected, in particular
black hole search is infeasible in trees. This is becausasynchronous networks it is impossible to
distinguish a black hole from a “slow”link incident to it. IHee the only way to locate a black hole is to
visit all other nodes and learn that they are safe. (In pdeticit is impossible to answer the question of
whether a black hole actually exists in the network, henc&[2, 5] worked under the assumption that
there is exactly one black hole and the task was to locate it.)

Totally asynchronous networks rarely occur in practicae®f (possibly large) upper bound on the
time of traversing any edge by an agent can be establishedceHeis interesting to study black hole
search in such partially synchronous networks. Withous lolsgenerality, this upper bound on edge
traversal time can be normalized to 1 which yields the foillmwdefinition of the time of a black hole
search scheme: this is the maximum time taken by the schaaméhé time under the worst-case location
of the black hole (or when it does not exist in the network$uasing that all edge traversals take time 1.
This was the scenario adopted in [1], and we use it in the ptgsgper as well.

The partially synchronous scenario makes a dramatic chiarifpe problem of searching for a black
hole. Now it is possible to use the time-out mechanism tototze black hole in any graph, with only
two agents, as follows: agents proceed along edges of aigganee. If they are at a safe nodgone
agent goes to the adjacent node and returns, while the ofleat svaits aw. If after time 2 the first
agent has not returned, the other one survives and knowsdh&dn of the black hole. Otherwise, the
adjacent node is known to be safe and both agents can movdtustis in fact a variant of theautious
walk described in [3] but combining it with the time-out mechamishakes black hole search feasible in
any graph. Hence the issue is now not the feasibility butithe efficiency of black hole search, and the
present paper is devoted to this problem.
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In all previous papers on black hole search it was assumedhiaatarting node is safe (otherwise
the agents would be immediately anihilated) and the blad& t@n be located in any other node. How-
ever, in practice, some other nodes may also be known asesgfebecause they were already verified
in some previous network exploration. Hence we adopt a menemgl scenario in which an arbitrary
subset of nodes of the network, containing the starting niedafe, and the black hole can be located in
one of the remaining nodes.

The time of a black hole search scheme should be distingliifleen the time complexity of the
algorithm producing such a scheme. While the first was defitee for a given input consisting of a
network and a starting node, and is in fact the larger of thebars of time units spent by the two agents
in the worst case, the second is the time of producing suchense by the algorithm. In other words,
the time of the scheme is the time of walking and the time cewipl of the algorithm is the time of
thinking.

1.2. Our results

We show that the problem of finding the fastest possible blaalk search scheme by two agents in
an arbitrary graph is NP-hard, and we give a 9.3-approxonatdr this problem, i.e., we construct a
polynomial time algorithm which, given a graph with a sulisfetafe nodes and a starting node as input,
produces, in polynomial time, a black hole search scheme&time is at most 9.3 times larger than the
time of the fastest scheme for this input.

2. Model and terminology

We consider a grapty with nodes which is the starting node of both agents. We assume thatsesub
S of nodes containing cannot contain a black hole. These nodes are calégl Each of the remaining
nodes can contain a black hole; they are callaedafe We assume that there is at most one black hole
in the network. This is a node which destroys any agentsngsit. A black hole search schemBHS-
schemgfor the input(G, S, s) is a pair of sequences of edge traversals (moves) of each bfthagents,
with the following properties.

e Each move takes one time unit (if the agent moved faster,iituili the end of the time unit at the
target node).

e Upon completion of the scheme there is at least one surviagent, i.e., an agent that has not
visited the black hole, and this agent either knows the ionadf the black hole or knows that
there is no black hole in the graph. The surviving agents maistn tos.

The time of a black hole search scheme is the number of tintg wniil the completion of the scheme,
assuming the worst-case location of the black hole in theptement ofS (or its absence, whichever
is worse). It is easy to see that the worst case for a givemselwecurs when there is no black hole in
the network or when the black hole is the last unvisited nagside ofS, both cases yielding the same
time. A scheme is callethstestfor a given input if its time is the shortest possible for timjgut.

An unsafe node is calleexploredat a given step of a BHS-scheme if the remaining agents know if
it is a black hole.
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Any BHS-scheme must have the following property: after adinumber of steps, at least one agent
stays alive and all unsafe nodes are explored (there is atoneslack hole, so once the black hole has
been found, all unsafe nodes are explored).

Theexplored territoryat stept of a BHS-scheme is the set of explored nodes. At the beginiiag
BHS-scheme the explored territory is empty. We say thaeatingoccurs in noder at stept when the
agents meet at nodeand exchange information whigtrictly increaseshe explored territory. Node
is called ameeting point

In any step of a BHS-scheme, an agent can traverse an edgetan wanode. Also the two agents
can meet. If at step a meeting occurs, then the explored territory at $tepdefined as the explored
territory after the meeting. The sequence of steps of a BHS-scheme betwearohgecutive meetings
is called aphase

3. Preliminary results

Lemma 3.1. In a BHS-scheme, an edge towards an unsafe unexplored noxletdee traversed by both
agents.

Proof:

Suppose that an edgaowards an unexplored nodéhas been traversed by an agent and wihiemains
unexplored (which means that the two agents have not yet fteetthe traversal off), the other agent
traverses . If v is a black hole, then both agents vanish, which means ttwisthot a BHS-scheme.O

Hence in a BHS-scheme, an unsafe node can be explored otilg foltowing way: an agent visits
it and then a meeting is scheduled. Whether it occurs or ndhé latter case the agent vanished in the
black hole) the node becomes explored.

Lemma 3.2. During a phase of a BHS-scheme an agent can visit at or@insafe unexplored node.

Proof:

Suppose that an agent visits two unexplored nodes. If oneenf tis a black hole and hence the agent
vanishes then there is no way for the other agent to locateldlo& hole without vanishing, which means
that this is not a BHS-scheme. O

Therefore an unsafe node could be explored in the next phdgefd is adjacent to the explored
territory. Recall that the explored territory increasel/@t scheduled meeting points.

Lemma 3.3. At the end of each phase, the explored territory is incredgemhe or two nodes.

Proof:

By the end of a phase the explored territory is increased Igaat one node. By Lemma 3.2, an agent
can visit at most one unsafe unexplored node during a pHasepbth agents can visit a total of at most
two unexplored nodes during a phase. O
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We define asingle exploration phasgSE-phasgto be a phase in which exactly one node is explored.
Similarly, we define alouble exploration phasgDE-phasg to be a phase in which exactly two nodes
are explored. In view of Lemma 3.3, every phase is either plsdSe or a DE-phase.

A nodep is called alimit of the explored territory at stepif it is either safe or explored, and it is
adjacent to an unexplored node.

A way of exploring exactly one node in a phase is the followinge of the agents walks through
safe or explored territory to its limj, while the other agent walks through the safe or exploreaitdey
to p, visits an unexplored node and returnsptolf we assume that both agents are at a limdf the
explored territory at stepandv is an unexplored node adjacentitonve define the following procedure:

probe(v): one agent traverses ed@e v) and returns to node to meet the other agent that waits. If
they do not meet at step+ 2 then the black hole has been found.

4. TheNP-hardness of the black hole search problem

In this section we prove that the following optimization plem is NP-hard:
TheBHS problem.

Input: GraphG with a subsefS of safe nodes, starting nodec S.
Find the fastest BHS scheme for the inpGt S, s).

In order to prove NP-hardness of the BHS problem, we preseatigction from the NP-complete
Hamiltonian Cycle Problem (HC problem) to the decision ierf the BHS problem, which we call
dBHS.

TheHC problem.

Input: GraphG
Question: Doegr contain a Hamiltonian cycle?

The dBHSproblem.

Input: graphG’ with a subsefS of safe nodes, starting nodes S, positive integetX .
Question: Does there exist a BHS scheme for the iG@ltS, s), with time at mostX ?

4.1. Construction

Let a graphGG with n nodes an@ edges be an instance of the HC problem. We construct a nel gfap
as follows. Call the nodes of gragghold nodes. In each edge 6fwe add2 new unsafe nodes adjacent
to endpoints of this edge and = 4e + 5n — 1 new safe nodes between them, as in Figure 1.slbedt
any node of the oldh nodes. All old nodes exceptare considered unsafe. Hence theSeff unsafe
nodes consists of all old nodes excend all nodes adjacent to old nodes.

The instance of the dBHS problem is the graghwith n’ = n + (M + 2)e nodes, the se$' of
I = n+ 2e — 1 unsafe nodes, nodeas a starting node, and the integér= M (n + 1) — 1.

The construction of this instance from the graplesan be clearly done in polynomial time. It remains
to prove that the answers “yes” to the HC problem for the ingraph G and the answer “yes” to the
dBHS problem for the constructed input are equivalent.
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M new safe nodes of a bridge

® :oldnode island center / . <
. / v

O :new unsafe node island

Figure 1. Construction of a dBHS problem instance

4.2. Analysisof thereduction

Fix a graphG with n nodes ana: edges and the grapR’ with n’ nodes wheré of them are unsafe,
constructed as in the previous section. Each nodé graphG corresponds to a nodé of graphG’
calledold node. Any set of nodes of graph’ consisting of an old node’ together with all adjacent
nodes is called arsland (see Figure 1). Node' is called thecenterof the island. Let, v, be two
nodes inG andv}, v}, be the corresponding old nodesG. The construction ofs’ implies thatvy, v,
are adjacent ir7 if and only if there is a path 6’ with endpointsv}, v, which does not pass through
any island except those with centefs v5. We call this path irG’ abridge

Let I be an island. After every meeting of the agents we define tl@wimg partition of the set of,
islands into set®¢ of partially explored islandgndi/ of unexplored islands

e [ ¢ P&, whenI has at least one of its nodes explored
e [ ¢ U, otherwise

The above patrtition is well defined at any moment in which atinges scheduled. In the beginning
we have|PE| = 1, U] = n — 1. At a meeting at time after a phase in a BHS-scheme one of the
following can happen: a) se®¢&, U/ do not change, b) one island is moved frénto PE, or ¢) two
islands are moved frortY to PE. We call the above types of phasegphase 1-phaseand 2-phase
respectively. We say that the agediscoveran island! at timet if and only if I is moved fronmi/ to PE
att. We callt the time ofdiscoveryof island.

Upon completion of any BHS scheme, all islands must have besmovered (i.e. moved from set
U to setPE). Consider a BHS schemeand letk; be the number of 1-phases ahgthe number of
2-phases. Since any island is moved frénto P& at the end of exactly one of the above phases in the
worst case (i.e. when there is no black hole), we Have 2k, = n — 1.

Lemma4.1. If graph G has a Hamiltonian cycle, then there exists a BHS scheme qi g¥astarting
at nodes, with time at most\/ (n + 1) — 1.

Proof:
The Hamiltonian cycle inG corresponds to a cycl€ in G’ which passes exactly once through every
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center of an island. The two agents agree on a direction ¢ ¢yand they explore grap’, starting
from s, as follows:

They explore by probing the nodes which are adjacent to thiecef the island except the two nodes
which are onC' and they return to the center of the island. Then they exjidgngrobing the unsafe node
of the bridge onC in the chosen direction and they walk along the bridge, hi#lyt get to the last safe
node of it. Subsequently, they explore the adjacent unsafewn(in the next island) by probing, walk to
it, explore the center of this island by probing and walk tdlihey repeat the above procedure in every
island onC' until they reach again node

The two agents cross bridges using the above procedure. They nééd- 9 time units to cross
every bridge inC', except the last one which leadsddor which they need\/ + 7 time units, since is
a safe node. Every edge @ corresponds to a bridge @@’. Since there are bridges in cycleC, there
aree — n bridges not crossed by the two agents. For each not crosskegt ihe agents explotenodes
(one from each endpoint of the bridge). Therefore they spetimie units in every bridge which is not
incycleC. The total timeis at mostn — 1)(M +9) + M +7+4(e —n) = M(n+1) — 1. 0

We say that a BHS schenaeon G’ is reducedto a BHS scheme’ iff at any stept; where a meeting
occurs inc the agents i’ are at the same node asdrand the explored territory is the same. Observe
that the time ob’ is not longer than the time of.

We call a BHS scheme ofi’ regular if and only if it has the following property. Take any meeting
pointp; in o at timet; and any island whose center is unexplorediatand the phase ending @atdoes
not explore any node af. Thenp; must be at distance at leakt + 2 from the center of .

Lemma4.2. Every BHS scheme 06" can be reduced to a regular one.

Proof:

Take the first meetingn which occurs in a BHS scheme at stept; at a nodep;, with the following
property: there is an islanfwhose center is unexploredatand the phase endingtdoes not explore
any node ofl. Suppose also that the distance between pod@d the center of is less than\/ + 2.

Consider the nodg, which is at distancé/ + 2 from the center of island on the bridge including
nodep;. We will transform the BHS schemeto a BHS scheme’ where the two agents meetgtat
stept; < t; and then they walk together till they reach nodet stepy;.

Sincem is the first meeting with the above propertydnthe meetingn’ beforem in o could not
have taken place in a node betwegérand the center of. Therefore there are steps between meetings
m’ andm at which the two agents were at noggnot neccesarily together) in Consider the last time
t1 before steg; when one of the agents, sy, was at node,.

If at time ¢; the other agenR; is not in a node between nodglsand the center of then, in scheme
o’ the agentR; waits since step, until it meetsR, and then they walk to node.

If at time ¢; the other agenR; is in a node between nodg$and the center of then consider the
last timet, before steg; when agent?,; was at node/. In schemer’ the agentR, waits since step,
until stept;, meets the other agent and then they walk to ngde O

Lemma4.3. Any 1-phase in a regular BHS scheme@hrequires more thai/ time units.

Proof:
In view of regularity of the scheme, in a 1-phase there isagtlene agent which has to cover a distance
of at leastM + 1 to reach a node of an islardde U/. O
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Lemma4.4. Any 2-phase in a regular BHS scheme@hrequires more thad) time units.

Proof:

Consider a 2-phase after which two islandd’ are discovered. Suppose that nodes I andu € I’
are explored in this 2-phase. In view of regularity of theesul, the meeting pointbefore that 2-phase
is at a distance at leasdt + 2 from any of the centers df, I’. Thereforep is at a distance at leadt + 1
from nodesv, u. Suppose that is at a distance: from nodev andy from nodeu. Since the centers
of islandsI, I’ are still unexplored, the bridge that each agent uses to gwetnew meeting point’ is
the same as that used to reach the island. Sineey > 2M, the agents need at least/ time units to
complete the 2-phase. O

In view of Lemmas 4.3 and 4.4, the time needed in any regula BEheme for discovering all
islands is at least/ky + 2Mky > (n — 1) M.

Lemma4.5. Consider a regular BHS schemeon G’. Suppose that contains a 2-phasg in which
islandsI, I’ are discovered and at the end @the two agents meet at a noge Then the distance
between node and the center of at least one of the islafd#’ is at leastM + 2.

Proof:

Since the meeting point beforgis at a distance at leadt/ + 2 from any of the centers of, I’ (by
regularity of the scheme) and each agent has to cross thelsaige to go tg as that used to reach the
island, the distance between nqdand the center of at least one of the islafd§' is at leastM +2. O

Let I, I», ..., I, be the enumeration of islands @/ in the order of discovery by a BHS-scheme
Let vy, v9, ..., v, be the sequence of nodesGhcorresponding to the centers of these islands. Ngde
corresponds to nodeof G’.

Lemma4.6. Consider a regular BHS-schemén which all islands are discovered during 1-phases. Let
t be the time of discovery af,_;. If t < (n — 1) M then the sequencs, vs, ..., v,—1 iS a path inG.

Proof:
After every meeting just before a 1-phase we may always |sepp symmetry that the same agént
goes to the completely unexplored island (we may need jusitéochange the names of the agents in
some meeting points in). Each 1-phase takes at ledgttime units. There are — 2 1-phases.

Suppose that the sequenge v, ..., v,_1 IS NOt a path inG. Then there exists < n — 1 such that
v; andv; 1 are not adjacent iG/. Therefore agenR; moves from island; to island/;,; via another
island. By regularity of the scheme, the meeting point atiscoveringl;_; is at distance at leagt/
from the center of;;. Hence discovering; and/; . takes total time at least\/, which implies that the
total time spent by ageri?; on the discovery of islands, ..., I,,_; is at leastn — 1) M. O

Lemma4.7. If G has no Hamiltonian cycle, then any regular BHS schenoa G’, starting at a center
of an island, requires time at legst+ 1)M.

Proof:
First suppose there is a 2-phase in schemd&ake the last 2-phasg¢in o and let/, I’ be the islands
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discovered during. Let p be the meeting point at the end of In view of Lemma 4.5 the distance
betweenp and the center of at least one of the islarddd’ is at leastM + 2. Let I be that island.
Consider the first phasg after ¢ in which a nodev of I is explored. Phasg¢ cannot be a 2-phase (since
I was already discovered befogg. Let p’ be the meeting point at step just beforey. If p’ = p then
the distance betweent and the center of is at leastM + 2. If p’ # p thenvy does not immediately
follow ¢ and hence, by regularity of the distance betweesn and the center of is at leastM + 2.

e Suppose that by the end ¢fall islands are discovered.

If ¢ is a O-phase, then the two agents have spent time at(leastl )M until stept,,. An agent
needs2) additional time units to go fromp’ to the center off and return tos. Hence the total
time is at leastn + 1) M.

If ¢ is a 1-phase, then it means that together with nodéisland 7, a nodeu of another island
J € U is explored. The two agents have spent time at least 2) M until stept,,. Since at step
ty, the center of the island is unexplored, any path which connects islaigdg and can be used
by the agents has length at led@st/. Hence phase ends at time at least). After phasey
the center ofJ is still unexplored. Therefore an agent needs at |@a¢ime units to go there and
return tos. Therefore the total time is at legst + 1) M.

e Suppose that after phagethere are islands still undiscovered.
If ¢ is a O-phase then it lasted at leddttime units.
If ¢ is a 1-phase then it lasted at le@8t time units for the same reason as before.

Since¢ was the last 2-phase of the last discovery phase efmust be a 1-phase. Calljt The
two agents have spent time at le&st— 1) M before the start ok. By regularity ofo an agent
needs2M additional time units to go to the center of the last discedesland and return ts.

Hence the total time is at leagt + 1) M.

If there is no 2-phase in the BHS scheméhen consider the following cases:

e v, is adjacent ta,,_; and tov; in G.
Since there is no Hamiltonian cycle @, the sequence,, v, ..., v,_1 cannot be a path ig:. In
view of Lemma 4.6 the time of discovery 6f_; is atleas{n—1)M. By regularity of the scheme,
the meeting point after discovering_; is at distance at least/ from the center off,,. Hence
discoveringl,, and returning ta takes time at leastM which implies that the total time of the
scheme is at leagh + 1) M.

e v, is not adjacent tw,,_;.
By regularity of the schemd,,_» is discovered in time at leagt — 3)M and the meeting point
after discoveringd,,_» is at a distance at leasf from the center of,,_;. Sincev,, is not adjacent
to v,_1, discoveringl,,_1, I, and returning tos takes a total time of at leagi\/ which implies
that the total time of the scheme is at le@st}- 1) M.

e v, is not adjacent te; in G.
By regularity of the schemd,,_; is discovered in time at leagt — 2) M and the meeting point
after discoveringd,,_1 is at a distance at leasdf from the center of,,. Sincev,, is not adjacent to
v, discoveringl,, and returning te takes a total time of at lea8fl/ which implies that the total
time of the scheme is at least + 1) M.
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In all cases we showed that the time of the scheme is at(eastl) M. This concludes the proof. O
We can now prove the main result of this section.
Theorem 4.1. The BHS problem is NP-hard.

Proof:

Itis enough to show that the answers “yes” to the HC problanthi®input graplG and the answer “yes”
to the dBHS problem for the constructed input are equival@ytLemma 4.1, ifG has a Hamiltonian
cycle then there exists a BHS scheme(@nstarting ats, with time at mos{n + 1) M — 1. Conversely,
suppose that there is a BHS scheme®nstarting ats, with time at most{n + 1)M — 1. By Lemma

4.2 it can be reduced to a regular BHS scheme, whose timeasaafsost(n + 1)M — 1. By Lemma

4.7, graphG has a Hamiltonian cycle. O

5. An approximation algorithm for the BHS problem

In this section we give an approximation algorithm for the®Bptoblem. The algorithm is based on the
construction of &teiner Treef the input grapi, where the unsafe nodes Gfalong with the starting
nodes are the required nodes. Recall that a Steiner Tree for a graph(V, E) with the setR C V' of
required nodes is any subtree@fcontainingR.

Algorithm Tree

construct a minimum Steiner Trdecontaining all the unsafe nodes and nade
explore(T), s))

Let G be a graph with a s&t of safe nodes and a starting pointe construct a Steiner Tr&éwhere
the unsafe nodes a@F along with nodes play the role of required nodes for the Steiner Tree. We can
construct such a Steiner Tree in polynomial time with apjpnation ratioa, wherea = 1+ “173 < 1.55
([9], [11]). More specifically, ifz is the number of unsafe nodesGhplus one for node, andy is the
number of safe nodes ifi (excluding nodes), while y* is @ minimum number of safe nodes (excluding
nodes) needed for the optimal Steiner Tree, then+ y) < 1.55(x + y*). We then use the procedure
explorgT, s).

Procedure explore(T, v))

for every unexplored nodeadjacent ta do
probe¢);
end for
if every node is explorethen
repeat walk(s) until both agents are at
else
next := relocate();
explore(7T, next))
end if
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The high-level description of the procedure explore is thlewing. Letv be the meeting point of the
two agents after a phase (initialy= s); the unexplored children af are explored by calling procedure
probe; this is repeated for any child @f The precise formulation of the algorithm is given below.

Function relocate() takes as input the current nodevhere both agents reside and returns the new
location of the two agents. If there is an unexplored nodacatjt to a child ob then the agents go to
that child. Otherwise the two agents go to the parent of

Function relocate()

case 1.1: 3 an unexplored node adjacentitoc children(v)
walk(w);
relocate:= w

case 1.2: every node adjacent to any child ofs explored
let ¢ be the parent of;
walk(t);
relocate:=t¢

The time-complexity of Algorithm Tree is polynomial in thize of G and is dominated by the time
of constructing the Steiner Tree. Procedure explore isdhdalepth first search type algorithm with the
only difference that any unsafe node is visited using a oaativay. The time spent on traversals of any
edge(u, v) (v is a child ofu) of the tre€T is at mostl units: the worst case is when edge v) leads to
an unexplored node which is not a leaf ifl’, therefore the agents spedime units for probingy, 1
time unit to walk tov and another time unit to return to node after the exploration of the descedants
of v. The total time needed by the BHS-scheme produced by Algoritree is less that(x + y).

Lemma5.1. Any BHS scheme for the grapgh requires at Ieas%(x + y*) traversals of edges.

Proof:
Take a BHS scheme. Let A7, for 1 < ¢, denote the set of edges anwhich are traversed exactly
times. Leta} = |A}|, A* = |, A} anda* = |A*|.

Let ¢ be a phase imr starting at meeting point:, and ending at meeting poim;. Letp(z),p;) be
the unsafe nodes exploreddrby agentsk,, R, respectively (possibly, = piz)).

Let By C Aj be the set of edges traversed By since the start o until 2, reaches nodg, at time
t. LetCy C A7 be the set of edges traversed Ry sincet to the end ofp. Let B(’z) C Aj be the set of
edges traversed by, since the start op until R, reaches nodpﬁz) at timet’. Let C(; C A7 be the set of
edges traversed hi, sincet’ to the end ofp (see Figure 2).

We have:

[Bol + [Col +1B4| + ICy "
4

Notice that if¢ is a SE-phase then at least ondxf, Cy, By, Cy is empty and the relation (1) still holds.
We will prove that we can remove any one of the s8tsCy, By, C7,, in every phase in o and the
resulting graph will still contain a Steiner Tree (with thet sf required nodes consisting of the unsafe

ones and of the node.
Let< ¢1, ¢9, ..., ¢ > be the enumeration of phases in the order that they appeaidineach phase
¢; we calculateBy,, Cy,, By, Cy. and we remove the set with the maximum number of edges.

max{|By|, |Cl, |Byl, IC5]} =
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R1 R2

Figure 2. The set8y, Cy, B(’b, C(; consist of edges traversed oncesimamely only in phase

Let G, be the graph resulting froi@¥ after removing sets of edges in all phases priag.to

Consider a phase. Let P be the path followed by an agent which departs frery, exploresp,,
and reachem;. Let P’ be the path followed by the other agent which departs fregnexploresp;, and
reachesn;b. All edges in both these paths belongdg because they are traversed either only in phase
¢ or traversed at least twice in This implies that nodes:, m’d),p(b,p;) are in the same component of
G. After removing one of the se8,, C, B(;, C(; in phasep, nodesm, m;b,p(ﬁ,pﬁz) are still connected
by one of the previous paths, s& and the remaining part d®’. Moreovermy, m;),p(z,,p;) cannot be
disconnected in any later phase, side@and the remaining part d?’ contain edges traversed onlydn
or traversed at least twice in

Sinces = my, andm;}i = Mg, 1 for1 < i < k — 1, the resulting graph after all the removals of
sets of edges done as above still contains a Steiner Trdet{weitset of required nodes consisting of the
unsafe ones and of the nosle

Let b, be the number of edges removed in phasend letaj(¢;) be the number of all edges

traversed only inp;. We haveb;i > %. Since after all removals the resulting graph still corgaan

Steiner Tree, we have® — b;l — b;)Q — .= b;k > ¢ + y*. Thereforea* — % > x + y*. The total
number of traversals iar is bounded as follows:

Zi'af >2-(a* —aj)+aj.
Hence we get

Z-Zz'aizi-(a —a1)+1-a121'a1+a —a; >z+y".

Thusy i af > 2(z + y*). O
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Theorem 5.1. Algorithm Tree is an approximation algorithm for the BHS Iplem with ratio9.3.

Proof:
The time needed by a fastest BHS-scheme for the gtajstO PT > ZZ’?"“; , Since there are two agents.
Hence the time needed by algorithm Tree is at most:

Az +y) <4-155-(z+y") <3155 i-af <9.3-OPT.

6. Conclusion

We showed that the black hole search problem is NP-hard andawe a polynomial approximation
algorithm to solve it. A natural open problem is to decredmeapproxiamtion ratio: 9.3 is relatively
high. Another interesting issue is to increase the potiemiiaber of black holes. In this case two agents
are not enough: the number of agents must be larger than tkienoma number of black holes. Also
connectivity requirements on the graph have to be imposedrder to make locating all black holes
feasible. A natural generalization of our approach woulddofind good approximation algorithms for
the black hole search problem with at médtoles, usind > k agents (whenever it is feasible on a given
input).
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