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Abstract. Given is a polygonal area and the goal is to cover the polygon’s
interior or boundary by placing a number of stations in the interior or on the
boundary. There are several parameters for this problem: what part of the poly-
gon (interior, boundary) is to be covered, and where can stations be placed
(vertices, edges, interior points); Furthermore there are minimization problems
(minimum number of stations) or maximization problems (given the number
of stations, maximize the covered portion of the polygon). Most of these prob-
lems are NP-hard and some are even APX-hard. We consider here a new more
realistic version: the boundary is subdivided into segments with lengths and
costs and the meaning of covering is relaxed and budgeted. More specifically
we consider maximization problems in polygons with weighted edge segments
and placement costs. We introduce a new concept: each candidate place for a
station has a cost. We study the following two problems: Given a polygon with
or without holes and a budget B, place stations so that the total cost of stations
does not exceed B and a) the length of the boundary covered is maximized or
b) the total weight of segments watched or overseen is maximized. We present
constant ratio approximation algorithms for all the above problems.
Keywords: Wireless Communication, Point to Station Communication, Compu-
tational Geometry, Approximation Algorithms, Visibility.

1 Introduction

The problem of covering a polygonal area by placing a minimum number of stations is
central in the development of wireless communication technology. An area is considered
covered if every point of the area can communicate with at least one station (two points
can communicate if they are mutually visible). The goal is to cover the whole area using
a minimum number of stations. We can also find this problem under the name ’Art
Gallery‘. In the Art Gallery problem the goal is to place a minimum number of guards
in a gallery so that every point in the interior of the gallery can be seen by at least one
guard.

Many variations of the Art Gallery problem have been studied during the last two
decades [2–4]. These variations can be classified with respect to where the guards are
allowed to be placed (e.g. on vertices, edges, interior of the polygon) or whether only
the boundary or all of the interior of the polygon needs to be guarded, etc. Most
known variations of this problem are NP-hard. Related problems that have been stud-
ied are Minimum Vertex/Edge/Point Guard for polygons with or without holes



(APX-hard and O(log n)-approximable [1, 5, 6]) and Minimum Fixed Height Ver-
tex/Point Guard On Terrain (Θ(log n)-approximable [5–7]). In [9] the case of
guarding the walls (and not necessarily every interior point) is studied. In [10] the fol-
lowing problem has been introduced: suppose we have a number of valuable treasures
in a polygon P ; what is the minimum number of mobile (edge) guards required to
patrol P in such a way that each treasure is always visible from at least one guard?
In [10] they show NP-hardness and give heuristics for this problem. In [11] weights are
assigned to the treasures in the gallery. They study the case of placing one guard in
the gallery in such a way that the sum of weights of the visible treasures is maximized.
Recent (non-)approximability results for art gallery problems can be found in [1–5, 7].
For a nice survey of approximation classes and important results the reader is referred
to [8].

Here we consider two new problems and we introduce a new concept which makes
the general problem more realistic: every candidate position of a station (guard) in
the polygon has been assigned a cost. The first problem we investigate here, is the
placement of stations on the boundary of the polygon (vertices or edges) so that a
maximum length of the boundary is covered. We can place as many stations as long
as the total cost does not exceed a given budget. The second problem we study is the
following: the given polygon has its boundary subdivided into weighted disjoint line
segments. The goal is to maximize the total value of the overseen segments by placing
stations on vertices or edges so that the total cost of stations is within a given budget.

A segment is overseen or visible or covered iff every point of the segment is visible
by at least one station. Two points are mutually visible iff the straight line segment
connecting them lies (everywhere) inside the polygon.

We also investigate what happens when the goal is simply to watch a maximum
total value of segments. We consider a segment watched if at least a part of it is overseen
by a station.

Besides the applications in an art gallery where the interpretation of line segments
are valued paintings, there are also important applications in wireless communication
networks: An interpretation of weighted line segments are inhabited areas. The polygon
models the geographical space. The weight interpretation is the population of an area.
Imagine a number of towns lying on the boundary of a polygonal geographical area.
The goal is to place a number of stations such that the total number of people that
can communicate is maximized. The total cost of the stations must be within a budget
B. Moreover, it could be the case that the towns are on the shore of a lake, so we can
only place stations on the boundary. Similar situations may arise in various other types
of landscape. A possible interpretation of an edge station (guard) is a mobile station
(guard) which is moving between the edge’s endpoints.

The two problems above have been studied in [12] for the case in which a cost 1 has
been assigned to each candidate position for a station. However, the polynomial time
approximation algorithms that have been presented there do not apply to the problems
we study here.

We present here polynomial time approximation algorithms achieving constant ra-
tios for the two problems based on a well known greedy algorithm which approximates
the Budgeted Maximum Coverage problem ([14]).



2 The Budgeted Maximum Length Vertex/Edge Guard
problem for polygons with (or without) holes

Suppose a polygon P with (or without) holes is given with costs on vertices, along with
a number B > 0. We are asked to cover a maximum portion of the polygon’s boundary
(including boundaries of the possible holes), using guards that have total cost no more
than B. We are allowed to use either only vertex guards or only edge guards (occupying
whole edges).

Definition 1 Given is a polygon P with or without holes with costs on vertices (or
edges) and a number B > 0. Let L(b) be the euclidean length of the line segment b.
The goal of the Budgeted Maximum Length Vertex/Edge Guard problem is to
place vertex (or edge) guards so that the euclidean length of that part of P ’s boundary
that is overseen by the guards is maximum and the total cost of vertices (or edges) with
guards is at most B.

In [12] we introduced the Maximum Length Vertex/Edge Guard problem, for
polygons with or without holes and proved that is NP-hard. Maximum Length Ver-
tex/Edge Guard is a special case of Budgeted Maximum Length Vertex/Edge
Guard where each vertex (edge) of the polygon has cost 1.

Fact 1 Budgeted Maximum Length Vertex/Edge Guard for polygons with (or
without) holes is NP-hard.

First we will discuss the case of polygons with or without holes where guards can
be placed only on vertices of the polygon.

In [12] we described an approximation algorithm for Maximum Length Vertex
Guard for polygons with or without holes. However, it is easy to verify that this
algorithm, does not approximate the budgeted case. We present here a new polynomial
time approximation algorithm which achieves a constant ratio for the budgeted case.
First we construct for every v ∈ V (P ) a set E′(v) which is the set of line segments on
the boundary visible from vertex v. We use the FVS construction which we introduced
in [12] to discretize the boundary of the polygon into segments that are visible iff
watched by a vertex guard. We recall from [12]: ‘We use the visibility graph VG(P ).
By extending edges of VG(P ) inside P up to the boundary of P we obtain a set of
points FV S of the boundary of P (that includes of course all vertices) (see figure 1).
There are O(n2) points in FV S (= finest visibility segmentation) and these points are
endpoints of line segments with the following property: for any vertex v ∈ V (P ), a
segment (a, b) defined by consecutive FV S points a, b is visible by v iff it is watched by
v’. Remember that a segment is watched by a point if at least a part of it is visible by
the point. In every step of the greedy algorithm which maximizes the overall overseen
boundary, a guard is placed on a vertex so that a maximum increase in length

cost
ratio is

achieved.
Let OPT denote the collection of the sets of the overseen FVS segments of an

optimal solution. Let SOL denote the collection returned by the algorithm. Let r be
the number of iterations executed by the algorithm until the first set Sl+1 belonging



Algorithm 1 BudgetedMaxLegthVertexGuards (* greedy *)

SOL← ∅
G← ∅
CTOT ← 0
M ← V

repeat

select vi ∈ V that maximizes L(G∪E
′(vi))

ci

if CTOT + ci ≤ B then

G← G ∪E
′(vi)

CTOT ← CTOT + ci

end if

M ←M − {vi}
until M = ∅
select vt ∈ V that maximizes L(E′(vt))
if L(G) ≥ L(E′(vt)) then

SOL← G

else

SOL← E
′(vt)

end if

return L(SOL)

the OPT collection is found but is not added to SOL because its addition would violate
budget B. We denote:

L(Sk) = L(∪k
i=1Si) − L(∪k−1

i=1
Si)

Thus the set Sk does not contain segments which have already been covered. Actually
the set Sk is the k-th set E′(vi) selected by the algorithm. We also sometimes call cost
of a set of segments, the cost of the vertex guard which oversees them.

Lemma 1. After l iterations it holds:

L(∪l
i=1Si) − L(∪l−1

i=1
Si) ≥

cl

B
(L(OPT ) − L(∪l−1

i=1
Si))

Proof. For every set Sk ∈ OPT − ∪
l−1

i=1
Si it holds:

L(Sk)

ck

≤
L(Sl)

cl

The total cost of the sets in OPT − ∪
l−1

i=1
Si is at most B. The total length of the

segments of the sets in OPT − ∪
l−1

i=1
Si is:

L(∪k
i=mS′

i)

Since
L(S′

m)

cm

≤
L(Sl)

cl



Fig. 1. Subdividing the boundary into line segments with endpoints in FV S

it holds

L(∪k
i=mS′

i) ≤ cm

L(Sl)

cl

+ cm+1

L(Sl)

cl

+ ... + cm+k

L(Sl)

cl

≤ B
L(Sl)

cl

Therefore

L(OPT ) − L(∪l−1

i=1
Si) ≤ B

L(Sl)

cl

It also holds
L(∪l

i=1Si) − L(∪l−1

i=1
Si) = L(Sl)

Thus
L(∪l

i=1Si) − L(∪l−1

i=1
Si) ≥

cl

B
(L(OPT ) − L(∪l−1

i=1
Si))

Lemma 2. After l iterations it holds:

L(∪l
i=1Si) ≥ (1 −

l∏

k=1

(1 −
ck

B
))L(OPT )

Proof. We will prove this by induction on l. It holds

L(S1) ≥
c1

B
L(OPT )

Suppose it holds for l − 1:

L(∪l−1

i=1
Si) ≥ (1 −

l−1∏

k=1

(1 −
ck

B
))L(OPT )



So
L(∪l

i=1Si) = L(∪l−1

i=1
Si) + (L(∪l

i=1Si) − L(∪l−1

i=1
Si))

From the previous lemma:

L(∪l
i=1Si) ≥ L(∪l−1

i=1
Si) +

cl

B
(L(OPT ) − L(∪l−1

i=1
Si)) →

L(∪l
i=1Si) ≥ L(∪l−1

i=1
Si)(1 −

cl

B
) +

cl

B
L(OPT )

From the inductive hypothesis:

L(∪l
i=1Si) ≥ (1 −

l−1∏

k=1

(1 −
ck

B
))L(OPT )(1 −

cl

B
) +

cl

B
L(OPT ) →

L(∪l
i=1Si) ≥ (1 −

l∏

k=1

(1 −
ck

B
))L(OPT )

Theorem 1 Algorithm 1 runs in polynomial time and achieves a constant 0, 316 ap-
proximation ratio with respect to the optimum of the Budgeted Maximum Length
Vertex Guard problem.

Proof. From lemma 2 it holds:

L(∪l+1

i=1
Si) ≥ (1 −

l+1∏

k=1

(1 −
ck

B
))L(OPT )

≥ (1 −

l+1∏

k=1

(1 −
ck∑l+1

i=1
ci

))L(OPT ), since

l+1∑

i=1

ci > B

The function

(1 −

n∏

i=1

(1 −
ai

A
))

where
∑n

i=1
ai = A has a minimum when a1 = a2 = ... = an = A

n
. Therefore

L(∪l+1

i=1
Si) ≥ (1 − (1 −

1

l + 1
)l+1)L(OPT ) ≥ (1 −

1

e
)L(OPT )

It holds L(Sl+1) ≤ L(St) since L(St) is a maximum length that a vertex can cover.
Thus

L(∪l
i=1Si) + L(St) ≥ L(∪l

i=1Si) + L(Sl+1) ≥ (1 −
1

e
)L(OPT )

Thus one of the values L(∪l
i=1Si) or L(St) is greater or equal to

1

2
(1 −

1

e
)L(OPT )



In case of edge guards, the only difference is that before running algorithm 1, we have
to calculate E′(ei) for every edge. All we have to do is to examine the FVS segments
which are watched by FVS points belonging to edge ei. Then, we run algorithm 1
using E′(ei) instead of E′(vi) and of course the edge costs instead of the vertex costs.
For both of the cases above, we proved in [13] that the special case of vertices or
edges with cost 1, i.e. Maximum Length Vertex/Edge Guard is APX-hard. Thus
Budgeted Maximum Length Vertex/Edge Guard in polygons with (or without)
holes is APX-complete.

3 The Budgeted Maximum Value Vertex/Edge Guard
problem

Suppose a polygon P with (or without) holes is given with weighted disjoint line seg-
ments on its boundary (including boundaries of the possible holes). Our line segments
are open intervals (a, b). Every vertex of the polygon has a cost value assigned (see
figure 2). Finally a budget B > 0 is given. The goal is to place guards on vertices (or
edges) so that a maximum weight is covered and the total cost of vertices (or edges)
with a guard is at most B.

Definition 2 Given is a polygon P with or without holes and an integer B > 0. As-
sume the boundary of P is subdivided into disjoint line segments with non negative
weights (see figure 2). Every vertex (or edge) has a cost value. The goal of the Bud-
geted Maximum Value Vertex/Edge Guard problem is to place vertex (or edge)
guards so that the total weight of the set of line segments watched (or overseen) is
maximum and the total cost of vertices (or edges) that have guards is at most B.

In [12] we introduced Maximum Value Vertex/Edge Guard for polygons with
or without holes and proved that it is NP-hard. Maximum Value Vertex/Edge
Guard is a special case of Budgeted Maximum Value Vertex/Edge Guard
where all vertices (or edges) have cost 1.

Fact 2 Budgeted Maximum Value Vertex/Edge Guard, for polygons with or
without holes is NP-hard.

First, we study the case of watching the segments, placing vertex guards. Algorithm
2 uses the precalculated set E′(vi), ∀i, which is the set of segments that are watched
by vi. This can be done easily by noticing that a segment (a, b) is watched by a vertex
v if at least one of the FVS segments that have a part in (a, b) is watched by vertex v.

Theorem 2 Algorithm 2 runs in polynomial time and achieves a 0.316 constant ap-
proximation ratio with respect to the optimum of the Budgeted Maximum Value
Vertex Guard problem.

The proof of theorem 2 is similar to that of theorem 1.
In case of edge guards, the only difference in algorithm 2 is that we need to calculate

E′(ei), ∀i, which is the set of segments that are watched by ei. We notice that a segment
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Fig. 2. A weighted polygon with weights on edge segments and costs on vertices

(a, b) is watched by an edge e if at least one of the FVS segments that have a part in
(a, b) is watched by any of the endpoints of FVS segments contained in edge e.

Now we consider the case in which the goal is to oversee a maximum weight with
the condition that an overseen segment must be overseen as a whole by one guard. We
can use algorithm 2 with modified sets E′: a) for the case of vertex guards we consider
a segment (a, b) overseen by a vertex v, if all FVS segments of (a, b) are watched by v,
b) for the case of edge-guards we consider a segment (a, b) overseen by an edge e, if all
FVS segments of (a, b) are watched by some of the endpoints of FVS segments of edge
e.

Thus, algorithm 2 (with proper modifications) approximates all the above cases
achieving a constant ratio.

4 Conclusion

We investigated the following problems for polygons with or without holes: 1) Bud-
geted Maximum Length Vertex/Edge Guard, 2) watching Budgeted Max-
imum Value Vertex/Edge Guard, 3) overseeing Budgeted Maximum Value
Vertex/Edge Guard. All problems are NP-hard and we found polynomial time ap-
proximation algorithms with constant ratio for all of them using a greedy technique
based on the approximation of the Budgeted Maximum Coverage problem.

While investigating the above problems we used a) weights on pieces of the poly-
gon’s boundary, and b) the useful and promising concept of watching a set of points
or line segments as opposed to completely overseeing it. In addition we introduced
costs on candidate guard places (vertices and edges).



Algorithm 2 BudgetedMaxValueVertexGuards (* greedy *)

SOL← ∅
G← ∅
CTOT ← 0
M ← V

repeat

select vi ∈ V that maximizes W (G∪E
′(vi))

ci

if CTOT + ci ≤ B then

G← G ∪E
′(vi)

CTOT ← CTOT + ci

end if

M ←M − vi

until M = ∅
select vt ∈ V that maximizes W (E′(vt))
if W (G) ≥W (E′(vt)) then

SOL← G

else

SOL← E
′(vt)

end if

return W (SOL)
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