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Abstract

We consider the problem of gathering identical, memoryless, mobile robots in one node of an anonymous unoriented ring.
Robots start from different nodes of the ring. They operate in Look–Compute–Move cycles and have to end up in the same
node. In one cycle, a robot takes a snapshot of the current configuration (Look), makes a decision to stay idle or to move to
one of its adjacent nodes (Compute), and in the latter case makes an instantaneous move to this neighbor (Move). Cycles are
performed asynchronously for each robot. For an odd number of robots we prove that gathering is feasible if and only if the initial
configuration is not periodic, and we provide a gathering algorithm for any such configuration. For an even number of robots we
decide the feasibility of gathering except for one type of symmetric initial configurations, and provide gathering algorithms for
initial configurations proved to be gatherable.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Mobile entities (robots), initially situated at different locations, have to gather at the same location (not determined
in advance) and remain in it. This problem of distributed self-organization of mobile entities is known in the literature
as the gathering problem. The main difficulty of gathering is that robots have to break symmetry by agreeing on a
common meeting location. This difficulty is aggravated when (as in our scenario) robots cannot communicate directly
but have to make decisions about their moves only by observing the environment.

We study the gathering problem in a scenario which, while very simple to describe, makes the symmetry breaking
component particularly hard. Consider an unoriented anonymous ring of stations (nodes). Neither nodes nor links of
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the ring have any labels. Initially, some nodes of the ring are occupied by robots and there is at most one robot in each
node. The goal is to gather all robots in one node of the ring and stop. Robots operate in Look–Compute–Move cycles.
In one cycle, a robot takes a snapshot of the current configuration (Look), then, based on the perceived configuration,
makes a decision to stay idle or to move to one of its adjacent nodes (Compute), and in the latter case makes an
instantaneous move to this neighbor (Move). Cycles are performed asynchronously for each robot. This means that
the time between Look, Compute, and Move operations is finite but unbounded, and is decided by the adversary for
each robot. The only constraint is that moves are instantaneous, and hence any robot performing a Look operation
sees all other robots at nodes of the ring and not on edges, while performing a move. However a robot R may perform
a Look operation at some time t , perceiving robots at some nodes, then Compute a target neighbor at some time
t ′ > t , and Move to this neighbor at some later time t ′′ > t ′ in which some robots are in different nodes from those
previously perceived by R because in the meantime they performed their Move operations. Hence robots may move
based on significantly outdated perceptions, which adds to the difficulty of achieving the goal of gathering. It should
be stressed that robots are memoryless (oblivious), i.e., they do not have any memory of past observations. Thus the
target node (which is either the current position of the robot or one of its neighbors) is decided by the robot during a
Compute operation solely on the basis of the location of other robots perceived in the previous Look operation. Robots
are anonymous and execute the same deterministic algorithm. They cannot leave any marks at visited nodes, nor send
any messages to other robots.

This very weak scenario, similar to that considered in [1,3,5,6,10,13,14], is justified by the fact that robots may
be very small, cheap and mass-produced devices. Adding distinct labels, memory, or communication capabilities
makes production of such devices more difficult, and increases their size and price, which is not desirable. Thus it
is interesting to consider such a scenario from the point of view of applications. On the theoretical side, this weak
scenario increases the difficulty of gathering by making the problem of symmetry breaking particularly hard, and thus
provides an interesting setting to study this latter issue in a distributed environment.

It should be noted that the gathering problem under the scenario described above is related to the well-known leader
election problem (cf. e.g. [12]) but is harder than it for the following reason. If robots in the initial configuration cannot
elect a leader among nodes (this happens for all periodic configurations and for some symmetric configurations) then
gathering is impossible (see Section 3). However, even if leader election is possible in the initial configuration, this
does not necessarily guarantee the feasibility of gathering. Indeed, while the node elected as a leader is a natural
candidate for the place to gather, it is not clear how to preserve the same target node during the gathering process,
due to its asynchrony. (Recall that nodes do not have labels, and configurations perceived by robots during their Look
operation change during the gathering process, thus robots may not “recognize” the previously elected node later on.)

An important and well-studied capability in the literature on robot gathering is the multiplicity detection [10,14].
This is the ability of the robots to perceive, during the Look operation, if there is one or more robots in a given location.
In our case, we prove that without this capability, gathering of more than one robot is always impossible. Thus we
assume the capability of multiplicity detection in our further considerations. It should be stressed that, during a Look
operation, a robot can only tell if at some node there are no robots, there is one robot, or there are more than one
robots: a robot does not see a difference between a node occupied by a or b robots, for distinct a, b > 1.

1.1. Related work

The problem of gathering mobile robots in one location has been extensively studied in the literature. Many
variations of this task have been considered. Robots move either in a graph, cf. e.g. [2,7–9,11], or in the plane [1,3–6,
10,13–15], they are labeled [7,8,11], or anonymous [1,3–6,10,13–15], gathering algorithms are probabilistic (cf. [2]
and the literature cited there), or deterministic [1,3–7,9–11,13–15]. Deterministic algorithms for gathering robots in
a ring (which is a task closest to our current setting) have been studied e.g., in [7–9,11]. In [7,8,11] symmetry was
broken by assuming that robots have distinct labels, and in [9] it was broken by using tokens.

To the best of our knowledge, the very weak assumption of anonymous identical robots that cannot send any
messages and communicate with the environment only by observing it, was used to study deterministic gathering
only in the case of robots moving freely in the plane [1,3–6,10,13–15]. The scenario was further precised in various
ways. In [4] it was assumed that robots have memory, while in [1,3,5,6,10,13–15] robots were oblivious, i.e., it was
assumed that they do not have any memory of past observations. Oblivious robots operate in Look–Compute–Move
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cycles, similar to those described in our scenario. The differences are in the amount of synchrony assumed in the
execution of the cycles. In [3,15] cycles were executed synchronously in rounds by all active robots, and the adversary
could only decide which robots are active in a given cycle. In [4–6,10,13–15] they were executed asynchronously: the
adversary could interleave operations arbitrarily, stop robots during the move, and schedule Look operations of some
robots while others were moving. It was proved in [10] that gathering is possible in the asynchronous model if robots
have the same orientation of the plane, even with limited visibility. Without orientation, the gathering problem was
positively solved in [5], assuming that robots have the capability of multiplicity detection. A complementary negative
result concerning the asynchronous model was proved in [14]: without multiplicity detection, gathering robots that do
not have orientation is impossible.

Our scenario is the most similar one to the asynchronous model used in [10,14]. The only difference is in the
execution of Move operations. This has been adapted to the context of the ring of stations (nodes): moves of the
robots are executed instantaneously from a node to its neighbor, and hence robots always see other robots at nodes.
All possibilities of the adversary concerning interleaving operations performed by various robots are the same as in
the model from [10,14], and the characteristics of the robots (anonymity, obliviousness, multiplicity detection) are
also the same.

1.2. Our results

For an odd number of robots we prove that gathering is feasible if and only if the initial configuration is not
periodic, and we provide a gathering algorithm for any such configuration. For an even number of robots we decide
the feasibility of gathering except for one type of symmetric configurations, and provide gathering algorithms for
initial configurations proved to be gatherable.

2. Terminology and preliminaries

We consider an n-node anonymous unoriented ring. Initially, some nodes of the ring are occupied by robots and
there is at most one robot in each node. The number of robots is denoted by k. During the gathering process robots
move, and at any time they occupy some nodes of the ring, forming a configuration. A configuration is denoted by a
pair of sequences ((a1, . . . , ar ), (b1, . . . , bs)), where the integers ai and b j have the following meaning. Choose an
arbitrary node occupied by at least one robot as node u1 and consider consecutive nodes u1, u2, u3, . . . , ur , occupied
by at least one robot, starting from u1 in the clockwise direction. (Clockwise direction is introduced only for the
purpose of definition, robots do not have this notion, as the ring is not oriented.) Integer ai , for i < r , denotes
the distance in the ring between nodes ui and ui+1, and integer ar denotes the distance between nodes ur and u1
(in the clockwise direction). Next, consider those nodes among u1, u2, u3, . . . , ur which are occupied by more than
one robot. Such nodes are called multiplicities. Suppose that uv1 , . . . , uvs are these consecutive nodes (ordered in
clockwise direction). Integer bi is defined as the distance in the clockwise direction between node u1 and node uvi .
It should be clear that different choices of node u1 give rise to different pairs of sequences. Respective sequences in
these pairs are cyclic shifts of each other and correspond to the same positioning of robots. So formally a configuration
should be defined as an equivalence class of a pair of sequences with respect to those shifts. To simplify notation we
will use pairs of sequences instead of those classes, and for configurations without multiplicities we will drop the
second sequence, simply using sequence (a1, . . . , ar ). An example of a configuration with two multiplicities is shown
in Fig. 1.

Consider a configuration C = (a1, . . . , ar ) without multiplicities. The range of the configuration C is the set
{a1, . . . , ar }. For any integer ai in the range of C , the weight of ai is the number of times this integer appears in the
sequence (a1, . . . , ar ). C is called periodic if the sequence (a1, . . . , ar ) is a concatenation of at least two copies of a
subsequence p. A periodic configuration is shown in Fig. 2. The configuration C can be also represented as the set Z
of nodes occupied by the robots. C is called symmetric if there exists an axis of symmetry of the ring, such that the set
Z is symmetric with respect to this axis. If the number of robots is odd and S is an axis of symmetry of the set Z then
there is exactly one robot on the axis S. This robot is called axial for this axis. A symmetric configuration is shown in
Fig. 3. Notice that all cases are possible for a configuration: symmetric, periodic, both symmetric and periodic, neither
symmetric nor periodic. A configuration which is periodic and symmetric is shown in Fig. 4. Two robots are called
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Fig. 1. A configuration with two multiplicities. The pair of sequences describing this configuration starting from robot A is ((2, 3, 3, 1, 3), (5, 9)).
The view of robot A is {((2, 3, 3, 1, 3), (5, 9)), ((3, 1, 3, 3, 2), (3, 7))}.

Fig. 2. A periodic configuration. The sequence describing this configuration starting from robot A is (2, 3, 1, 2, 3, 1). The view of robots A and D
is {(2, 3, 1, 2, 3, 1), (1, 3, 2, 1, 3, 2)}. Robots B and E have the same view {(3, 1, 2, 3, 1, 2), (2, 1, 3, 2, 1, 3)}. Robots C and F have the same view
{(1, 2, 3, 1, 2, 3), (3, 2, 1, 3, 2, 1)}.

Fig. 3. A symmetric configuration. The sequence describing this configuration starting from robot A is (2, 2, 4, 2, 2). The view of robot A
is {(2, 2, 4, 2, 2), (2, 2, 4, 2, 2)}. Robots B and E have the same view {(2, 4, 2, 2, 2), (2, 2, 2, 4, 2)}. Robots C and D have the same view
{(4, 2, 2, 2, 2), (2, 2, 2, 2, 4)}.

Fig. 4. A symmetric and periodic configuration. The sequence describing this configuration starting from robot A is (2, 2, 1, 2, 2, 1, 2, 2, 1). This
configuration has 3 axes of symmetry. The view of robots A, C, D, F, G, I is {(2, 2, 1, 2, 2, 1, 2, 2, 1), (1, 2, 2, 1, 2, 2, 1, 2, 2)}. The view of robots
B, E, H is {(2, 1, 2, 2, 1, 2, 2, 1, 2), (2, 1, 2, 2, 1, 2, 2, 1, 2)}.

neighboring, if at least one of the two segments of the ring between them does not contain any robots. A segment of
the ring between two neighboring robots is called free if there is no robot in this segment.
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Fig. 5. A rigid configuration. The views of robots A, B, C, D, E are {(3, 3, 3, 2, 1), (1, 2, 3, 3, 3)}, {(3, 3, 2, 1, 3), (3, 1, 2, 3, 3)},
{(3, 2, 1, 3, 3), (3, 3, 1, 2, 3)}, {(2, 1, 3, 3, 3), (3, 3, 3, 1, 2)} and {(1, 3, 3, 3, 2), (2, 3, 3, 3, 1)} respectively.

We now describe formally what a robot perceives during a Look operation. Fix a robot R in a configuration
represented by a pair of sequences ((a1, . . . , ar ), (b1, . . . , bs)), where this particular representation is taken with
respect to the node occupied by R (i.e., this node is considered as node u1). The view of robot R is the set of two
pairs of sequences {((a1, . . . , ar ), (b1, . . . , bs)), ((ar , ar−1, . . . , a1), (n − bs, . . . , n − b1))} (if the node occupied
by R is a multiplicity then we define the view of R as {((a1, . . . , ar ), (0, b2, . . . , bs)), ((ar , ar−1, . . . , a1), (0, n −

bs, . . . , n − b2))}). This formalization captures the fact that the ring is unoriented and hence the robot R cannot
distinguish between a configuration and its symmetric image, if R is itself on the axis of symmetry. This is conveyed
by defining the view as the set of the two couple of sequences because the sets

{((a1, . . . , ar ), (b1, . . . , bs)), ((ar , ar−1, . . . , a1), (n − bs, . . . , n − b1))}

and

{((ar , ar−1, . . . , a1), (n − bs, . . . , n − b1)), ((a1, . . . , ar ), (b1, . . . , bs))}

are equal. As before, if there are no multiplicities, we will drop the second sequence in each case and write the view
as the set of two sequences: {(a1, . . . , ar ), (ar , ar−1, . . . , a1)}. For example, in a 9-node ring with consecutive nodes
1, . . . , 9 and three robots occupying nodes 1, 2, 4, the view of robot R at node 1 is the set {(1, 2, 6), (6, 2, 1)}.

A configuration without multiplicities is called rigid if the views of all robots are distinct. A rigid configuration is
shown in Fig. 5. We will use the following geometric facts.

Lemma 2.1. 1. A configuration without multiplicities is non-rigid, if and only if it is either periodic or symmetric.
2. If a configuration without multiplicities is non-rigid and non-periodic then it has exactly one axis of symmetry.

Proof. 1. For the first part of the lemma, we first show that if a configuration C without multiplicities
is symmetric then C is non-rigid. Consider two robots a, b (placed at symmetric nodes) with views
{(a1, . . . , ar ), (ar , ar−1, . . . , a1)}, {(b1, . . . , br ), (br , br−1, . . . , b1)}. Suppose that in a’s view, the sequence of
distances a+ = (a1, . . . , ar ) is in the clockwise direction and in b’s view, the sequence of distances b− =

(br , br−1, . . . , b1) is in the counterclockwise direction (again clockwise and counterclockwise directions are
introduced only for the purpose of analysis, robots do not have these notions, as the ring is not oriented). The
axis of symmetry S crosses the ring in two points. Let as be the first and am be the second distance in a+ which
correspond to segments crossed by the axis of symmetry. The first intersection point is either at the middle of as
or at the node us+1 containing a robot c (recall from Section 2 that as denotes the distance in the ring between
nodes us and us+1). The second intersection point is either at the middle of am or at the node um+1 containing a
robot d. Let also aw be the distance in a+ for which uw+1 is the node where robot b has been placed. Then the wth
distance in b− is the distance between nodes u2 and u1 (u1 is the node where robot a has been placed). Because
a and b are placed at symmetric nodes, a1 = br = aw = br−w+1 and the distances as, am appear as sth, mth,
respectively in b−. Also ar = b1 for the same reason. Moreover for every j , if the j th distance in a+ lies between
any two of a1, as, aw, am, ar then it appears as the j th distance in b− and lies between the corresponding two of
br , br−s+1, br−w+1, br−m+1, b1. Therefore:

(a1, . . . , as, . . . , aw, . . . , am, . . . , ar ) = (br , . . . , br−s+1, . . . , br−w+1, . . . , br−m+1, . . . , b1).
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This means that robots a, b have the same view and hence the configuration is non-rigid.
If the configuration C is periodic then it can be written as C = (a1, . . . , ar ) and C is a concatenation of at least

two copies of a sequence (a1, . . . , ap) of distances. It holds:

(a1, . . . , ap, . . . , ar ) = (ap+1, . . . , ar , a1, . . . , ap)

since the second sequence is only the first one shifted by the repeated sequence (a1, . . . , ap). Let a+ =

(a1, . . . , ap, . . . , ar ) be the sequence of distances in the clockwise direction in a robot a’s view (robot a is placed
at node u1). Then (ap+1, . . . , ar , a1, . . . , ap) is the sequence of distances in the clockwise direction in a robot b’s
view (where robot b is placed at node u p+1). Therefore a, b have the same views and the configuration is again
non-rigid.

Now we prove that if C is non-rigid then it is either symmetric or periodic. Since C is non-rigid, there are two
robots a, b having the same view. Suppose again that in a’s view, the sequence of distances a+ = (a1, . . . , ar ) is in
the clockwise direction and the sequence of distances a− = (ar , ar−1, . . . , a1) is in the counterclockwise direction
and analogous for b: b+ = (b1, . . . , br ) and b− = (br , br−1, . . . , b1).

Thus either (a1, . . . , ar ) = (br , br−1, . . . , b1), or (a1, . . . , ar ) = (b1, . . . , br ).
• If (a1, . . . , ar ) = (br , br−1, . . . , b1): Let aw be the distance in a+ for which uw+1 is the node where robot b has

been placed. Hence aw = br . Then the wth distance in b− is the distance between nodes u2 and u1 (u1 is the
node where robot a has been placed). Hence br−w+1 = a1. Let as be the b

w+1
2 cth distance in a+ (between a1

and aw) and let am be the b
w+r

2 cth distance in a+ (between aw and ar ). We have, a1 = br = aw = br−w+1 and
the distances as, am appear as sth, mth, respectively in b−. Also from the hypothesis it holds ar = b1. Moreover
for every j , if the j th distance in a+ lies between any two of a1, as, aw, am, ar then it appears as the j th distance
in b− and lies between the corresponding two of br , br−s+1, br−w+1, br−m+1, b1. Therefore:

(a1, . . . , as, . . . , aw, . . . , am, . . . , ar ) = (br , . . . , br−s+1, . . . , br−w+1, . . . , br−m+1, . . . , b1).

The configuration is symmetric and the axis of symmetry crosses the distance as in the middle or at us+1 and
the distance am in the middle or at um+1.

• If (a1, . . . , ar ) = (b1, . . . , br ): Suppose also that going clockwise from robot a to robot b there is no other
robot c for which c+ = a+ (if there is such a robot then take that robot as b). Consider the distance aw in a+

for which uw+1 is the node where robot b has been placed. It must hold aw+1 = b1 = a1, aw+2 = b2 = a2 and
so on. Hence aw+i = bi = ai , 1 ≤ i ≤ w and amw+i = bi = ai , where mw + i < r . We claim that the above
sequences are periodic, and more precisely that each one of them is a concatenation of copies of the subsequence
(a1, . . . , aw). If r is a multiple of w then it is clearly the case. Otherwise, let r = mw + x , where 1 ≤ x < w

(i.e., ar = amw+x = bx = ax ). Consider the distance ar+w−x = aw−x . We have ar+w−x = a(m+1)w = bmw.
Therefore ar+w−x+1 = bmw+1 = b1 = a1 and in general ar+w−x+i = bmw+i = bi = ai . But aw−x appears
before aw and consequently aw−x+1 appears before aw+1 = b1. This means that the robot c which is at the
node uw−x+1 (which is between a and b in a+ sequence) has the sequence c+ in its view equal to a+ which is
a contradiction.

2. For the second part of the lemma, consider a non-rigid and non-periodic configuration. In view of the first part of
the lemma, the configuration has to be symmetric with an axis of symmetry S1. Suppose that there is another axis
of symmetry S2. Take two robots a, b which are placed at symmetric nodes with respect to S1. Then, as we proved
in the first part of the lemma, if a+ = (a1, . . . , ar ) is the sequence of distances in the clockwise direction in a’s
view and b− = (br , br−1, . . . , b1) is the sequence of distances in the counterclockwise direction in b’s view, we
have a+ = b−. If at least one of these robots (say a) is on the axis S2 then (a1, . . . , ar ) = (ar , ar−1, . . . , a1) and
hence (a1, . . . , ar ) = (b1, . . . , br ). But then we can argue as before that the configuration is periodic, which leads
to a contradiction. If none of a, b is on the axis S2 then take a third robot c which has the same view as b because
of the axis S2. This means that (b1, . . . , br ) = (cr , cr−1, . . . , c1) (where c− = (cr , cr−1, . . . , c1) is the sequence
of distances in the counterclockwise direction in c’s view). Hence (a1, . . . , ar ) = (c1, . . . , cr ). Again we can argue
as before that the configuration is periodic, which is a contradiction. �

Consider a configuration without multiplicities that is non-rigid and non-periodic. Then it is symmetric. Let S be
its unique axis of symmetry. If the number of robots is odd then exactly one robot is situated on S and S goes through
the antipodal node if the size n of the ring is even, and through the (middle of the) antipodal edge if n is odd. If the
number of robots is even then two cases are possible:
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• edge–edge symmetry : S goes through (the middles of) two antipodal edges;
• node-on-axis symmetry : at least one node is on the axis of symmetry.

Note that the first case can occur only for an even number of robots in a ring of even size.
We now establish two basic impossibility results. Note that similar results have been proven for gathering robots

on the plane. However, these results do not directly imply ours.

Proposition 2.1. 1. Gathering any 2 robots is impossible on any ring.
2. If multiplicity detection is not available then gathering any k > 1 robots is impossible on any ring.

Proof. 1. Consider a gathering algorithm for 2 robots. In any configuration the robots have the same view. Consider
what the algorithm does if the distance between the robots is 1. If the algorithm tells the robots not to move then
it is clearly incorrect. If it tells them to move then a synchronous adversary that schedules all operations of both
robots simultaneously does not permit gathering: the robots will always be at odd distance (in the case when the
algorithm tells them to move towards each other when at distance 1, this adversary forces perpetual swapping).

2. The proof is by induction on k. For k = 2 it follows from part 1. Suppose that the statement is true for all numbers
k′ < k of robots and consider a gathering algorithm for k robots. Consider the configuration C just before the first
multiplicity is created. Then at least one robot R moves to an adjacent node occupied by another robot. Consider
an adversary that first schedules a Look and a Move operation only for robot R, and only then schedules the next
Look operations for other robots. Robot R will create a multiplicity, thus reducing the number of nodes occupied
by robots to k − 1. All subsequent Look operations will be performed for at most k − 1 nodes occupied by robots.
Since multiplicity detection is not available, the perceptions of the robots will be the same as in the case of less
than k robots. By the inductive hypothesis gathering is thus impossible. �

Proposition 2.1 justifies the two assumptions made throughout this paper: the number k of robots is at least 3 and
robots are capable of multiplicity detection.

All our algorithms describe the Compute part of the cycle of robots’ activities. They are written from the point of
view of a robot R that got a view in a Look operation and computes its next move on the basis of this view.

The rest of the paper is organized as follows. In Section 3 we establish two impossibility results: gathering
is not feasible for periodic and edge–edge symmetric configurations. In Section 4 we give a procedure to gather
configurations containing exactly one multiplicity. In Section 5 we propose a gathering procedure for rigid
configurations. In Section 6 we give the complete solution of the gathering problem for any odd number of robots.
Section 7 concludes the paper with a discussion of gathering for an even number of robots and with open problems.

3. Impossibility results

In this section we show two impossibility results. The first one concerns any number of robots.

Theorem 3.1. Gathering is impossible for any periodic configuration.

Proof. Consider a periodic configuration with the period repeated t > 1 times. Consider an adversary synchronously
scheduling all operations in rounds: first the Look operation for all robots, then the Compute operation for all robots,
then the Move operation for all robots, and so on. We remind the reader that the robots are oblivious, i.e., they do not
have any memory of past observations. The configuration is periodic in round 0. Suppose it is periodic in round r . The
views of all t corresponding robots in the t copies of the period are identical in round r and hence the configuration
remains periodic in round r + 1, with t copies of the period. By induction, the configuration remains periodic in every
round, with t copies of the period. Since t > 1, gathering will never occur. �

The second impossibility result concerns only the case of an even number of robots on a ring of even size.

Theorem 3.2. Gathering is impossible for any edge–edge symmetric configuration.

Proof. Consider a configuration which has an edge–edge symmetry. This means that both the size of the ring and
the number of robots are even. Consider an adversary synchronously scheduling all operations in rounds: first the
Look operation for all robots, then the Compute operation for all robots, then the Move operation for all robots, and
so on. The configuration is symmetric in round 0. Suppose it is symmetric in round r . If robot R′ is the symmetric
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image of robot R with respect to this symmetry then the distance between R and R′ is odd. Robots R and R′ have
identical views in round r , hence they will behave identically (robots are oblivious), and their distance in round r + 1
will change either by 0, or by 2 or by −2. This implies that in round r + 1 the configuration will remain symmetric
(robots R and R′ have again the same view), and the distance between robots R and R′ will remain odd. By induction,
the configuration remains symmetric, and the distance between a robot and its symmetric image remains odd, in all
rounds. This implies that gathering will never occur. �

4. Gathering configurations with a single multiplicity

In this section we show a gathering procedure for any configuration containing exactly one multiplicity, say at
node v. The idea is to gather all robots at v, avoiding by creating another multiplicity (which could potentially create
a symmetry, making the gathering process harder or even impossible). The following procedure achieves this goal by
first moving the robots closest to v towards v, then moving there the second closest robots, and so on.

Procedure Single-Multiplicity-Gathering

if R is at the multiplicity then do not move
else

if none of the segments between R and the multiplicity is free
then do not move
else move towards the multiplicity along the shortest of the free

segments or along any of them in the case of equality.

Lemma 4.1. Procedure Single-Multiplicity-Gathering performs gathering of robots for any configuration with a
single multiplicity.

Proof. The procedure guarantees that a robot moves only in the case when some segment of the ring between it and
the multiplicity is free, and in this case the robot moves on this free segment. This implies that no multiplicity other
than the existing one will be created. Since for any configuration with a single multiplicity, some robots outside the
multiplicity have a free segment between itself and the multiplicity, after any point of time t some robots outside the
multiplicity will make a move towards the multiplicity, always in the same direction. This implies that, if at time t
there are still robots outside the multiplicity, then at some later time t ′, some robots will reach the multiplicity, thus
reducing the number of robots outside it. Since robots at the multiplicity never move, gathering will be eventually
performed. �

5. Gathering rigid configurations

In this section we show a gathering procedure for any rigid configuration, regardless of the number of robots. The
main idea of the procedure is to elect a single robot and move it until it hits one of its neighboring robots, thus creating
a single multiplicity, and then to apply Procedure Single-Multiplicity-Gathering. The elected robot must be such that
during its walk the rigidity property is not lost. In order to achieve this goal, we perform the election as follows.
First the robots elect a pair of neighboring robots at maximum distance (there may be several such pairs, whence the
need for election). Then they choose among them the robot which has the other neighboring robot closer. Ties can be
broken easily (see the details of the algorithm).

In order to elect a robot we need to linearly order all possible views. This can be done in many ways. One of
them is to order lexicographically all finite sequences of integers and number them by consecutive natural numbers.
Then a view becomes a set of two natural numbers. Treat these sets as ordered pairs of natural numbers in increasing
order, order these pairs lexicographically, and assign them consecutive natural numbers in increasing order. We fix the
resulting linear order of views and this numbering beforehand, adding it to the algorithm for all robots. The natural
number assigned to a view will be called the code of this view.
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Procedure Rigid-Gathering

Max := the largest of the distances ai in the view of R.
M := the robot with the largest code of view having a neighboring robot at distance
Max .
N := the robot with the largest code of view having M as a neighboring robot at
distance Max .
//the pair of robots at distance Max is elected.//
j := 1
M1 := M ; N1 := N ; M0 := N ; N0 := M
repeat

j := j + 1
M j := the neighboring robot of M j−1 different from M j−2
N j := the neighboring robot of N j−1 different from N j−2

until (the distance between N and N j is different than
the distance between M and M j )

N ′
:= N j ; M ′

:= M j
if there is no multiplicity then

if the distance between N and N ′ is smaller than
the distance between M and M ′ then

if R = N then move towards N2
else if R = M then move towards M2

else Single-Multiplicity-Gathering

Lemma 5.1. Procedure Rigid-Gathering performs gathering of robots for any rigid configuration without
multiplicities.

Proof. Suppose that robots M and N at distance Max are elected in the first part of the procedure. Suppose, without
loss of generality, that the distance a between M and M ′ is less than the distance b between N and N ′. Then robot
M moves towards M2. After this move, the distance between M and N becomes Max + 1, and the distance between
M and M2 becomes a − 1. No other distances between neighboring robots change. Hence in the new configuration,
M and N are again neighboring robots at maximum distance. The configuration is again rigid because M and N are
the unique pair of neighboring robots at distance Max + 1 and the distance a − 1 between M and M2 is smaller than
the distance b between N and N2. Robots M and N are again elected because now there is only one neighboring
pair of robots at the maximum distance Max + 1. Since the distance a − 1 between M and M2 is smaller than the
distance b between N and N2, it is again the robot M that will move towards M2. It follows that, until a multiplicity
is created, only one robot will move, and it will move in the same direction. This guarantees that a multiplicity will be
finally created and it will be unique. Hence Procedure Single-Multiplicity-Gathering will be applied, thus completing
gathering, in view of Lemma 4.1. �

6. Gathering an odd number of robots

In this section we present a gathering algorithm for any non-periodic configuration of an odd number of robots.
Together with Theorem 3.1 this solves the gathering problem for an odd number of robots. The idea of the algorithm
is the following. Consider any non-periodic configuration of an odd number of robots (recall that initially there are no
multiplicities). If it is rigid then apply Procedure Rigid-Gathering. Otherwise it must be symmetric, by Lemma 2.1.
There is a unique axial robot for its unique axis of symmetry. Move this robot to any adjacent node. We prove that
three cases can occur. (1) The resulting situation has a multiplicity (the adjacent node was occupied by a robot):
then apply Procedure Single-Multiplicity-Gathering. (2) The resulting configuration is rigid: then apply Procedure
Rigid-Gathering. (3) Another axis of symmetry has been created (the previous one has been obviously destroyed by
the move). In this case there is a unique axial robot for the unique axis of symmetry. Move this robot to any adjacent
node. Again one of the three above cases can occur. We prove that after a finite number of such moves, only cases (1) or
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Fig. 6. A series of non-periodic, symmetric configurations.

(2) can occur, and thus gathering is finally accomplished either by applying Procedure Single-Multiplicity-Gathering
or by applying Procedure Rigid-Gathering.

Hence the algorithm can be stated as follows.

Algorithm Odd-Gathering

if the configuration is periodic then output: gathering impossible
else

if the configuration has a single multiplicity
then Single-Multiplicity-Gathering
else

if the configuration is rigid then Rigid-Gathering
else

if R is axial then move (to any of the adjacent nodes)

Example 6.1. Consider the configuration C = (a, a + 1, a − 1, a + 1, a − 1, a + 1, a) of 7 robots, for some
a > 1 (see Fig. 6(i)). This is a symmetric non-periodic configuration with the axial robot at distance a from its
neighboring robots. After moving the axial robot towards one of its neighboring robots, we obtain the configuration
C ′

= (a + 1, a + 1, a − 1, a + 1, a − 1, a + 1, a − 1) as shown in Fig. 6(ii), which is again symmetric and non-
periodic. Its axial robot is at distance a+1 from its neighboring robots. After moving the axial robot of C ′ towards any
one of its neighboring robots, we obtain a rigid configuration in which gathering can be completed using Procedure
Rigid-Gathering. �

In the proof of the correctness of Algorithm Odd-Gathering we will use the following lemmas.

Lemma 6.1. Let C be a symmetric configuration of an odd number of robots, without multiplicities. Let C ′ be the
configuration resulting from C by moving the axial robot to any of the adjacent nodes. Assume that C ′ does not have
multiplicities. Then C ′ is not periodic.

Proof. Since C is symmetric, C ′ is of the form (a + 1, b1, . . . , bs−1, bs, bs−1, . . . , b1, a − 1). Suppose that C ′ is
periodic and take the period d of a length p in which d1 = a + 1 (the first term of the period d is the first term of C ′).
Then dp = a − 1 (the last term of the period d is the last term of C ′). Since C is symmetric, it must hold that dp = d1.
Contradiction. �

Lemma 6.2. Let Cf be a symmetric non-periodic configuration of an odd number of robots, without multiplicities.
Then exactly one value in the range of Cf has odd weight.

Proof. By Lemma 2.1, the configuration Cf has exactly one axis of symmetry. Let S be this axis, and let C and D be
the unique pair of neighboring robots, situated on the opposite sides of S (see Fig. 3). Let x be the length of the free
segment between C and D. Consider any value y different from x , in the range of Cf. For every pair of neighboring
robots with the free segment between them of length y, there is the symmetric pair of robots with the same length
of the free segment between them. This implies that y must have even weight. On the other hand, for every pair of
neighboring robots different from C, D, with the free segment between them of length x , there is the symmetric pair
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of robots with the same length of the free segment between them. In view of the existence of the pair C, D, this implies
that x must have odd weight. �

Let Cf be a symmetric non-periodic configuration of an odd number of robots, without multiplicities (see Fig. 3 for
an example). The unique value of odd weight in the configuration Cf is called the chief of Cf. This is the value of the
length of the free segment between the two neighboring robots situated on the opposite sides of the axis of symmetry.
The distance between the axial robot and its neighboring robots is called the index of Cf. Let Cf′ be the configuration
resulting from Cf by moving the axial robot to any of the adjacent nodes. If Cf′ does not have multiplicities and is
symmetric then we will call it special. In Fig. 3 the chief is the value of the length of the free segment between robots
C and D. The index is the value of the distance between robots A and E (or A and B).

Lemma 6.3. Let C be a symmetric non-periodic configuration of an odd number of robots, without multiplicities. Let
z and f be the index and chief of C respectively. Let C ′ be the configuration resulting from C by moving the axial
robot to any of the adjacent nodes. If C ′ is special then z = f − 1 or z = f + 1 and the chief of C ′ is either z + 1 or
z − 1.

Proof. If the weights of z + 1 and z − 1 are both even in C ′, then both of them must have been odd in C . But this
contradicts Lemma 6.2. For the same reason, exactly one of them has an odd weight in C . Therefore the chief f in C
is either f = z − 1 or f = z + 1. Additionally, exactly one of z − 1 and z + 1 has an even weight in C and thus an
odd weight in C ′ and that is the chief of C ′. �

Consider a special configuration C . We define the following sets:

• White part: the set of those integers in the range of C with the same parity as that of the chief.
• Black part: the set of those integers in the range of C with different parity than that of the chief.

For example if the chief of C is an odd number then the white part is the set of odd integers while the black part is the
set of even integers in the range of C .

We denote by b(C) the total number of occurrences in C of integers from the black part of its range.

Lemma 6.4. Consider a special configuration C. Let C ′ be the configuration resulting from C by moving the axial
robot to any of the adjacent nodes. If C ′ is special then b(C ′) < b(C).

Proof. Let z be the index of C , and f its chief. By Lemma 6.3, we have either z = f − 1 or z = f + 1. Consider the
first case, i.e., f = z + 1. In the configuration C ′, the weight of each of the integers z + 1 and z − 1 increases by 1 and
the weight of integer z decreases by 2. Since the weight of f was odd in C , now it becomes even. Since the weight of
z − 1 was even, now it becomes odd and z − 1 is the chief of C ′. The parity of the chief does not change with respect
to the configuration C . Hence z (if it still has positive weight in C ′) is in the black part of the range of C ′ because it
has parity different from that of the chief. Integers z − 1 and z + 1 are in the white part of the range. No other weights
change in comparison with C . It follows that the sum of weights in the black part of C ′ is by 2 smaller than the sum
of weights in the black part of C . The argument in the second case, i.e., when f = z − 1, is analogous. �

Corollary 6.1. Consider a sequence (C1, C2, . . .) of special configurations, such that Ci+1 results from Ci by moving
the axial robot to any of the adjacent nodes. Then for some i ≤ k, we have b(Ci ) = 0.

Lemma 6.5. Consider a special configuration C, with b(C) = 0. Let C ′ be the configuration resulting from C by
moving the axial robot to any of the adjacent nodes. If C ′ does not have multiplicities then it is not symmetric.

Proof. If C ′ were symmetric, then it would be special. This contradicts Lemma 6.4 in view of b(C) = 0. �

We are now ready to prove the correctness of Algorithm Odd-Gathering.

Theorem 6.1. Algorithm Odd-Gathering performs gathering of any non-periodic configuration of an odd number of
robots.

Proof. Consider an initial non-periodic configuration C of an odd number of robots. By assumption it does not contain
multiplicities. If it is rigid then we are done by Lemma 5.1. Otherwise, it must be symmetric by Lemma 2.1. Let A be
its unique axial robot. Let C1 be the configuration resulting from C by moving robot A to any of the adjacent nodes. If
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C1 contains a multiplicity then we are done by Lemma 4.1. If C1 is rigid then we are done by Lemma 5.1. Otherwise,
C1 is either periodic or symmetric, in view of Lemma 2.1. By Lemma 6.1, it cannot be periodic, hence it must be
symmetric, and thus special. Consider the configuration C2 resulting by moving the axial robot of C1 to any of the
adjacent nodes. Again C2 either contains a multiplicity, or is rigid, or is special. In the first two cases we are done, and
in the third case the axial robot is moved again. In this way we create a sequence C1, C2, . . . of special configurations.
By Corollary 6.1, there is a configuration Ci in this sequence, with b(Ci ) = 0. Let C ′ be the configuration resulting
from Ci by moving the axial robot to any of the adjacent nodes. By Lemma 6.5, the configuration C ′ either has a
multiplicity, or cannot be symmetric, and thus must be rigid. In the first case we are done by Lemma 4.1 and in the
second case by Lemma 5.1. �

Theorems 3.1 and 6.1 imply the following corollary.

Corollary 6.2. For an odd number of robots, gathering is feasible if and only if the initial configuration is not periodic.

7. Conclusion

We completely solved the gathering problem for any odd number of robots, by characterizing configurations
possible to gather (these are exactly non-periodic configurations) and providing a gathering algorithm for all these
configurations. Corollary 6.2 is equivalent to the following statement: for an odd number of robots, gathering is
feasible if and only if in the initial configuration, robots can elect a node occupied by a robot.

For an even number of robots, we proved that gathering is impossible if either the number of robots is 2, or the
configuration is periodic, or when it has an edge–edge symmetry. On the other hand, we provided a gathering algorithm
for all rigid configurations. This leaves unsettled one type of configurations: symmetric non-periodic configurations of
an even number of robots with a node-on-axis type of symmetry. These are symmetric non-periodic configurations in
which at least one node is situated on the unique axis of symmetry. This (these) node(s) may or may not be occupied
by robots. In this case, the symmetry can be broken by initially electing one of the axial nodes. This node is a natural
candidate for the place to gather. However, it is not clear how to preserve the same target node during the gathering
process, due to its asynchrony. Unlike in our gathering algorithm for an odd number of robots, where only one robot
moves until a multiplicity is created, in the case of the above symmetric configuration of an even number of robots,
some robots would have to move together. This creates many possible outcomes of Look operations for other robots,
in view of various possible behaviors of the adversary, which can interleave their actions. We note here that for an even
number of robots there are cases where gathering is feasible even when robots cannot initially elect a node occupied
by a robot.

The complete solution of the gathering problem for an even number of robots remains a challenging open question
left by our research. We conjecture that in the unique case left open (non-periodic configurations of an even number
of robots with a node-on-axis symmetry), gathering is always feasible. In view of our results, this is equivalent to the
following statement.

Conjecture. For an even number of more than 2 robots, gathering is feasible if and only if the initial configuration is
not periodic and does not have an edge–edge symmetry.

The validity of this conjecture would imply that, for any number of more than 2 robots, gathering is feasible if and
only if, in the initial configuration robots can elect a node (not necessarily occupied by a robot).

In the model studied in this paper we have assumed that the robots move instantly, they have the capability to detect
a multiplicity and their visibility is unlimited. It would be interesting to study under what conditions gathering is still
achievable when robots disappear from the system when in transit on a link, or they lack the multiplicity detection
capability (and they have some other capabilities), or their visibility is limited.
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