
Mobile Agent Rendezvous

in a Synchronous Torus?

Evangelos Kranakis1,??, Danny Krizanc2, and Euripides Markou3,? ? ?

1 School of Computer Science, Carleton University, Ottawa, Ontario, Canada.
kranakis@scs.carleton.ca

2 Department of Mathematics, Wesleyan University, Middletown, Connecticut 06459, USA.
dkrizanc@caucus.cs.wesleyan.edu

3 School of Computational Engineering & Science, McMaster University, Hamilton, Ontario, Canada.
markoue@mcmaster.ca

Abstract. We consider the rendezvous problem for identical mobile agents (i.e., running the same
deterministic algorithm) with tokens in a synchronous torus with a sense of direction and show that
there is a striking computational difference between one and more tokens. More specifically, we show
that 1) two agents with a constant number of unmovable tokens, or with one movable token, each
cannot rendezvous if they have o(log n) memory, while they can perform rendezvous with detection
as long as they have one unmovable token and O(log n) memory; in contrast, 2) when two agents
have two movable tokens each then rendezvous (respectively, rendezvous with detection) is possible
with constant memory in an arbitrary n×m (respectively, n× n) torus; and finally, 3) two agents
with three movable tokens each and constant memory can perform rendezvous with detection in a
n×m torus. This is the first publication in the literature that studies tradeoffs between the number
of tokens, memory and knowledge the agents need in order to meet in such a network.

Keywords: Mobile agent, rendezvous, rendezvous with detection, tokens, torus, synchronous.

? A preliminary version of this paper appeared in the proceedings of the 7th Latin American Theoretical Infor-
matics Symposium (LATIN’ 06), March 2006, Valdivia, Chile, LNCS 3887, pp. 653-664.

?? Research supported in part by NSERC (Natural Sciences and Engineering Research Council of Canada) and
MITACS (Mathematics of Information Technology and Complex Systems) grants.

? ? ? Work done partly while visiting Carleton University (2005-2006). Research supported in part by NSERC grant
and by PYTHAGORAS project 70/3/7392 under the EPEAEK program of the Greek Ministry of Educational
and Religious Affairs.

1 Introduction

We study the following problem: how should two mobile agents move along the nodes of
a network so as to ensure that they meet or rendezvous?

The problem is well studied for several settings. When the nodes of the network are
uniquely numbered, solving the rendezvous problem is easy (the two agents can move to
a node with a specific label). However even in that case the agents need enough memory
in order to remember and distinguish node labels. Symmetry in the rendezvous problem
is usually broken by using randomized algorithms or by having the mobile agents use
different deterministic algorithms. (See the surveys by Alpern [1] and [2], as well as the
recent book by Alpern and Gal [4]). Yu and Yung [15] prove that the rendezvous problem
cannot be solved on a general graph as long as the mobile agents use the same deterministic
algorithm. While Baston and Gal [7] mark the starting points of the agents, they still rely
on randomized algorithms or different deterministic algorithms to solve the rendezvous
problem. Anderson and Fekete [5] and Alpern and Baston [3] study the problem in two-
dimensional lattices having again the mobile agents use different strategies.

Research has focused on the power, memory and knowledge the agents need, to ren-
dezvous in a network. In particular what is the ‘weakest’ possible condition which makes
rendezvous possible? For example Yu and Yung [15] have considered attaching unique
identifiers to the agents while Dessmark, Fraigniaud and Pelc [8] added unbounded mem-
ory; note that having different identities allows each agent to execute a different algorithm.
Other researchers (Barriere et al [6] and Dobrev et al [9]) have given the agents the ability
to leave notes in each node they visit. In another approach each agent has a stationary
token placed at the initial position of the agent. This model is much less powerful than
distinct identities or than the ability to write in every node. Assuming that the agents
have enough memory, the tokens can be used to break symmetries. This is the approach
introduced in [13] and studied in Kranakis et al [12] and Flocchini et al [10] for the ring
topology. In particular the authors proved in [12] that two agents with one unmovable
token each in a synchronous, n-node oriented ring need at least Ω(log log n) memory in
order to do rendezvous with detection. They also proved that if the token is movable then
rendezvous without detection is possible with constant memory.

We are interested here in the following scenario: there are two identical agents running
the same deterministic algorithm in an anonymous oriented torus. In particular we are
interested in answering the following questions. What memory do the agents need to solve
rendezvous using unmovable tokens? What is the situation if they can move the tokens?
What is the tradeoff between memory and the number of tokens?

1.1 Model and terminology

Our model consists of two identical mobile agents that are placed in an anonymous,
synchronous and oriented torus. The torus consists of n rings and each of these rings

2

consists of m nodes. Since the torus is oriented we can say that it consists of n vertical
rings. A horizontal ring of the torus consists of n nodes while a vertical ring consists of m
nodes. We call such a torus a n×m torus. The mobile agents share a common orientation
of the torus, i.e., they agree on any direction (clockwise vertical or horizontal). Each
mobile agent owns a number of identical tokens, i.e., the tokens are indistinguishable. A
token or an agent at a given node is visible to all agents on the same node, but is not
visible to any other agents. The agents follow the same deterministic algorithm and begin
execution at the same time.

At any single time unit, the mobile agent occupies a node of the torus and may 1) stay
there or move to an adjacent node, 2) detect the presence of one or more tokens at
the node it is occupying and 3) release/take one or more tokens to/from the node it is
occupying. We call a token movable if it can be moved by any mobile agent to any node of
the network, otherwise we call the token unmovable in the sense that it can occupy only
the node in which it has been released.

More formally we consider a mobile agent as a finite Moore automaton4 A = (X, Y,S, δ, λ, S0),
where X ⊆ D×Cv×CMA, Y ⊆ D×{drop, take}, S is a set of σ states among which there
is a specified state S0 called the initial state, δ : S ×X → S, and λ : S → Y . D is the set
of possible directions that an agent could follow in the torus. Since the torus is oriented,
the direction port labels are globally consistent. We assume labels up, down, left, right.
Therefore D = {up, down, left, right, stay} (stay represents the situation where the
agent does not move). Cv = {agent, token, empty} is the set of possible configurations of
a node (if there is an agent and a token in a node then its configuration is agent). Finally,
CMA = {token, no− token} is the set of possible configurations of the agent according to
whether it carries a token or not.

Initially the agent is at some node u0 in the initial state S0 ∈ S. S0 determines an action
(drop token or nothing) and a direction by which the agent leaves u0, λ(S0) ∈ Y . When
incoming to a node v, the behavior of the agent is as follows. It reads the direction i of
the port through which it entered v, the configuration cv ∈ Cv of node v (i.e., whether
there is a token or an agent in v) and of course the configuration cMA ∈ CMA of the agent
itself (i.e., whether the agent carries a token or not). The triple (i, cv, cMA) ∈ X is an
input symbol that causes the transition from state S to state S ′ = δ(S, (i, cv, cMA)). S ′

determines an action (such as release or take a token or nothing) and a port direction
λ(S ′), by which the agent leaves v. The agent continues moving in this way, possibly
infinitely.

We assume that the memory required by an agent is at least proportional to the number of
bits required to encode its states which we take to be Θ(log(|S|)) bits. Memory permitting,
an agent can count the number of nodes between tokens, or the total number of nodes
of the torus, etc. In addition, an agent might already know the number of nodes of the
torus, or some other network parameter such as a relation between n and m. Since the

4 The first known algorithm designed for graph exploration by a mobile agent, modeled as a finite automaton,
was introduced by Shannon [14] in 1951.

3

A B

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

1

2

3

4

5

6

7

Fig. 1. Two agents in a 15× 8 (2−dimensional) torus. Agent A has coordinates (2, 2). Agent B has coordinates
(10, 5). Their distance is d(A, B) = (min{|A1−B1|, (n−|A1−B1|)}, min{|A2−B2|, (m−|A2−B2|)}) = (min{|2−
10|, (15− |2− 10|)}, min{|2− 5|, (8− |2− 5|)}) = (min{8, 7}, min{3, 5}) = (7, 3).

agents are identical they face the same limitations on their knowledge of the network.
In what follows, we assume that, unless explicitly stated, the agents have no knowledge
about the number of nodes of the torus or any other parameter of the network, apart from
its dimension.

The distance between two nodes on a d-dimensional torus n1×n2× · · ·×nd, is a d-vector
whose ith element is min{|xi − yi|, (ni − |xi − yi|)} where xi, yi are the ith co-ordinates
of the nodes. An example of two agents in a torus is shown in Figure 1.

Let U = {(n1/2, 0, ..., 0), (0, n2/2, ..., 0), ..., (0, 0, ..., nd/2)}, where each ni is even, be a set
consisting of d vectors in d-dimension.

Theorem 1. Consider two agents placed in a d-dimensional oriented torus (n1 × n2 ×
· · · × nd) so that their distance is the sum of vectors contained in any nonempty subset S
of U. Assume that for any non-zero element of the distance, the number of nodes of that
dimension of the torus is even. Then, no matter how many tokens or how much memory
the agents have, it is impossible for the agents to rendezvous.

Proof. Let D = (x1, x2, ..., xd), where xi = 0 or xi = ni/2, 1 ≤ i ≤ d be the initial
distance of the agents. As long as they do not release a token, the agents are in the
same configuration. Since the configuration of each node they occupy is also the same
(empty), the agents are in the same state and maintain their distance. They release
tokens simultaneously and since they maintain their distance they meet tokens at the
same time. In other words they are always in the same state and configuration while the
configuration of the node they occupy is always the same. Therefore they maintain their
distance forever. 2

4

Corollary 1. Two agents placed in a n × m torus are incapable of meeting each other
(no matter how many movable or unmovable tokens they have) if their initial distance is
either (n/2, 0) or (0, m/2) or (n/2, m/2).

Theorem 1 is a generalization of Theorem 1 in [12] which states that it is impossible for
two agents equipped with one unmovable token each, to rendezvous in a ring with n nodes
if their initial distance is n/2, where n is even.

Definition 1. We call rendezvous with detection (RVD) the problem in which the agents
meet each other if their distance is not the sum of vectors contained in any nonempty
subset S of U, otherwise they stop moving and declare that is impossible to meet each
other.

We say that an algorithm A solves RVD (or A is an RVD algorithm) if: a) A leads the
agents to rendezvous, when their initial distance is not the sum of vectors contained in
any nonempty subset S of U and b) A halts after a finite number of steps and the agents
declare that rendezvous is impossible, when the distance is indeed the sum of vectors
contained in a subset S of U .

Definition 2. We call rendezvous without detection (RV) the problem in which the agents
meet each other if their distance is not the sum of vectors contained in any nonempty
subset S of U.

Therefore we say that an algorithm A solves RV (or A is an RV algorithm) if the agents
rendezvous when their initial distance is not the sum of vectors contained in any nonempty
subset S of U . If, however, the distance is indeed the sum of vectors contained in a subset
S of U then A may run forever.

We assume that at any single time unit an agent can traverse one edge of the network or
wait at a node (we assume that taking or leaving a token can be done instantly). For a
given torus G and starting positions s, s′ of the agents we define as cost CTRV D(A, G, s, s′)
of an RVD algorithm A, the maximum time (number of steps plus waiting time of an
agent) needed either to rendezvous or to decide that rendezvous is impossible. The cost
CTRV (A′, G, s, s′) of an RV algorithm A′, is the time needed to rendezvous (when it is pos-
sible of course). Finally, the time complexity of an RVD or RV algorithm is its maximum
cost overall possible starting positions of the agents.

1.2 Our results

In the study of the rendezvous problem this paper shows that there is a striking compu-
tational difference between one and more tokens. More specifically, we show that:

1. Two agents with a constant number of unmovable tokens each cannot rendezvous if
they have o(log n) memory.

5

2. Two agents with one movable token each cannot rendezvous if they have o(log n)
memory.

3. Two agents with one unmovable token each can perform rendezvous with detection as
long as they have O(log n) memory.

4. When two agents have two movable tokens each then rendezvous (respectively, ren-
dezvous with detection) is possible with constant memory in an arbitrary n ×m (re-
spectively, n× n) torus.

5. Two agents with three movable tokens each and constant memory can perform ren-
dezvous with detection in an arbitrary n×m torus.

This is the first publication in the literature that studies tradeoffs between the number of
tokens, memory and knowledge the agents need in order to meet in such a network.

1.3 Outline of the paper

In Section 2 we first give some preliminary results concerning possible ways that an agent
can move in a torus using either no tokens or a constant number of unmovable tokens.
Then we prove that rendezvous without detection in a torus cannot be solved by two
agents with one movable token each, or with a constant number of unmovable tokens
unless their memory is Ω(log n) bits.

In Section 3 we give an algorithm for rendezvous with detection in a n × n torus using
one unmovable token and O(log n) memory. We also give an algorithm for rendezvous
with detection in a n × n torus using two movable tokens and constant memory. Next
we give an algorithm for rendezvous without detection in an arbitrary n×m torus using
two movable tokens and constant memory, stating the relation that m and n must have
in order to do rendezvous with detection following that algorithm. Finally we give an
algorithm for rendezvous with detection in a n×m torus using three movable tokens and
constant memory.

In Section 4 we discuss the results and state some open problems.

2 Memory lower bounds of rendezvous

2.1 Preliminary results

Lemma 1. Consider one mobile agent with σ states and no tokens. We can always (for
any configuration of the automaton, i.e. states and transition function) select an n × n
oriented torus, where n = Ω(σ) so that no matter what is the starting position of the
agent, it cannot visit all nodes of the torus. In fact, the agent will visit at most (σ + 1)n
nodes.

6

Proof. If we select an oriented n × n torus, where n > σ then the agent has to repeat
a state at some point (before visiting all nodes). Let S be the first state repeated. Let
v be the node where the agent is placed when S is encountered for the first time and v′

be the node where the agent is located when S is repeated for the first time. We call px,
py the horizontal and vertical distance respectively of v′ from v. Since S is the first state
repeated, the total number of nodes visited by the agent until it encounters S again is at
most σ + 1.

Once the agent is again at state S it has to repeat the same trajectory (px, py). Label the
nodes of the torus 0, . . . , n− 1 horizontally and vertically. If vx, vy are the coordinates of
node v, then after n repetitions of state S, the position of the agent is:

(vx + npx) mod n = vx

(vy + npy) mod n = vy

This means that the agent is again at node v and state S. The agent has to continue
moving visiting exactly the same nodes. Hence the agent will visit at most (σ+1)n nodes.
2

The above lemma can be generalized for the case of a n × m torus. It suffices to select
n = apx and m = apy, where a is such that apx > σ and apy > σ. After a repetitions of
the first repeated state the agent will be again located at the same node. Therefore it will
visit at most (σ + 1)a = O((σ + 1)(m + n)) nodes.

Lemma 2. Consider one mobile agent with σ states and one unmovable token. We can
always (for any configuration of the automaton, i.e. states and transition function) select
an oriented n× n torus, where n = Ω(σ2) so that no matter what is the starting position
of the agent, it cannot visit all nodes of the torus. In fact, the agent will visit at most
(σ + 1)(1 + σn) = O(σ2n) nodes.

Proof. As long as the agent does not release the token lemma 1 holds.

Suppose that the agent releases the token at some point. This point has to be before
repeating a state (otherwise it will never take this decision since after repeating a state,
everything is being repeated). Hence up to that point it has visited up to σ + 1 nodes in
a n×n torus, where n > σ. After releasing the token the agent moves just like in Lemma
1 (without having any tokens). Take the first state S which is encountered and repeated
after dropping the token.

Suppose that after at most n repetitions of S, the agent does not meet its token. Then it
visits at most (σ + 1)n nodes (see the proof of Lemma 1). Hence in that case the agent
visits a total number of at most (σ + 1)(n + 1) nodes.

Suppose now that at some point t, the agent sees again its token before finds himself
located at a node twice having the same state. In view of Lemma 1, up to that point t,

7

it has visited at most (σ + 1)n nodes. When it meets its token it could change its orbit
visiting another (σ + 1)n nodes. After at most σ times it sees its token being in a state
twice. In other words, it could enter at most σ different states (thus changing its orbit)
when it meets its token. Therefore it will visit a total of at most σ + 1 + (σ + 1)σn nodes
and after that it visits exactly the same nodes. Hence if we select the size of the torus to
be n = Ω(σ2), then the agent will visit at most (σ + 1)(1 + σn) = O(σ2n) nodes. 2

Again Lemma 2 can be easily generalized for the case of a n×m torus. In that case the
agent will visit at most O(σ2(m + n)) nodes.

For the case of more than one unmovable tokens, we can apply again the arguments used
in Lemmas 1, 2. Observe that in this case, after the first token has been released, the
agent cannot release a new token at a distance more than σ + 1 nodes away from another
token. Therefore we get:

Theorem 2. Consider one mobile agent with σ states and a constant number k of identi-
cal unmovable tokens. We can always (for any configuration of the automaton, i.e. states
and transition function) select a n×n oriented torus, where n = Ω(σ2) so that no matter
what is the starting position of the agent, it cannot visit all nodes of the torus. In fact,
the agent will visit at most O(σ2n) nodes.

We will also need the following technical lemma:

Lemma 3. Let A be an agent with σ states and one unmovable token in a n × n torus,
where n = Ω(σ2) and let v be a node in that torus. There are at most (σ + 1)(1 + σn) =
O(σ2n) different starting nodes that we could have placed A so that node v is always being
visited by A.

Proof. By Lemma 2, agent A can visit at most (σ+1)(1+σn) different nodes. This means
that starting from a node s, there are at most (σ +1)(1+σn) different nodes ui = (xi, yi)
(where xi, yi are oriented horizontal and vertical respectively distances of node ui from
s) that could be visited. We prove that a fixed node v can be reached only starting from
at most (σ + 1)(1 + σn) different nodes:

Take a node s as a starting node. Suppose that the given node v has relative distance
(x, y) from s (e.g. x nodes horizontally clockwise and y nodes vertically clockwise) and
can be reached by A. Change the starting node to s′. Now from the new starting node
s′, agent A can reach the node at distance (x, y) (which of course is different than v).
Suppose that A can still reach node v which now is at a different distance (x′, y′) from s′.

By repeating this procedure you can have at most (σ + 1)(1 + σn) = O(σ2n) different
starting nodes for which an agent starting there visits node v, otherwise it would mean
that there exists a starting node such that once the agent started there, it could pass from
more than (σ + 1)(1 + σn) nodes which in view of Lemma 2 is impossible. 2

8

2.2 An Ω(log n) memory lower bound for rendezvous using one movable
token

Lemma 4. Consider two mobile agents with σ states. They each have a token (identical
to each other). Then we can always (for any configuration of the automatons, i.e. states
and transition function) find an oriented n × n torus, where n = Ω(σ2) and place the
agents so that if they can not move tokens then they cannot rendezvous.

Proof. If we place the agents at any distance, as long as they do not release their token
they maintain their distance since they move in exactly the same way.

Suppose that at some point they release their token and they move.

a) Consider the case that they see a token before they repeat a state. The total number of
nodes visited before a state is repeated is at most σ + 1. Therefore we can initially place
the agents at such a distance (greater than σ + 1 in any dimension) so that if they see
a token before repeating a state then this token is their own token. Hence they see their
tokens at the same time and since they continue moving in exactly the same way they
maintain their distance.

b) They repeat a state without having seen a token. Take the first state S that they
repeat. Suppose that when first are at state S, at that moment they are at nodes v1, v2.

If n is the size of the torus, consider what happens after at most n repetitions of S:

i) either both of the agents do not see a token, or

ii) at least one of the agents sees a token

In case i) Lemma 1 holds and hence they will eventually be located again at nodes v1, v2

having state S, therefore maintaining their distance.

Suppose now case ii), i.e. at least one of the agents sees a token before the n repetitions.
We prove that we can initially place the agents so that they never meet the other’s token.

We place the first agent A in a node. If A can meet only its token, then by Lemma 2, the
agent would visit at most (σ + 1)(1 + σn) nodes before it repeats everything. We prove
that we can initially choose a node to place the other agent B so that anyone’s token is
out of reach of the other:

We need to place the second agent B so that

– it releases its token tB at a node different from at most (σ + 1)(1 + σn) nodes visited
by the first agent A and

– to avoid to visit the node where the first agent A released its token tA

We can place the second agent B at a starting node out of at least n2 − (σ + 1)(1 + σn)
(taking n = Ω(σ2)) so that B’s token is out of reach of A. Moreover, by Lemma 3 only

9

A's token B's token

Fig. 2. Two agents with 1 unmovable token each cannot see each other’s token.

(σ + 1)(1 + σn) starting nodes could lead agent B to meet A’s token. Thus there are at
least n2 − 2(σ + 1)(1 + σn) starting nodes that satisfy the above property.

Therefore if we choose the size of the torus n = Ω(σ2), then we can place the agents so
that if they meet a token it is always their token. Hence they do this at the same time
and their distance do not change. The situation has been illustrated in Figure 2 (orbits of
agent A have been drawn with solid lines while orbits of agent B have been drawn with
dashed lines). 2

Notice that in the previous scenario, where the two agents cannot move the tokens, there
are still unvisited nodes (from the same agent) in the torus. In fact we proved Lemma 4
by describing a way to ‘hide’ token tA in a node not visited by agent B and token tB in
a node not visited by agent A.

Definition 3. If there are two starting nodes s, s′ for the agents A and B so that agent
A drops its token tA in a node not visited by agent B and agent B drops its token tB in
a node not visited by agent A then we say that s, s′ satisfy property π.

If the agents could move the tokens, then it is easy to think of an algorithm where all
nodes of any torus are visited by the same agent. For example consider the following
algorithm:

- 1: go right until you meet the second token;

- 2: move the token down;

- 3: repeat from step 1;

Nevertheless the goal is again to place the agents in a way that they could meet only their
own token. To achieve this we place the agents so that in a phase which starts when the

10

agents move their tokens, up to the moment when they move their tokens again they do
not meet each other’s token.

Lemma 5. Consider two mobile agents with σ states. They each have a token (identical
to each other). Then we can always (for any configuration of the automatons, i.e. states
and transition function) find an oriented n× n torus, where n > 8σ3 = Ω(σ3) and place
the agents so that even if they can move tokens they cannot rendezvous.

Proof. As long as they do not move tokens Lemma 4 holds. We can initially place the
agents so that if they see a token, it is their own token (up to the moment that they
decide to move it). Suppose that at some point they decide to move their token.

Then each agent moves with a probably different orbit than before. Every time they see
a token they can change their orbit. Nevertheless they can change their orbits for at most
σ times.

We proved in Lemma 4 that we could place the agents so that in the first part (i.e. until
they decide to move the tokens for the first time), they do not meet and they do not see
each other’s token. Suppose that agent A has been placed at a node s.

In view of Lemma 4 there are at most 2(σ + 1)(1 + σn) starting nodes so that each one
paired with s do not satisfy property π up to the moment that the agents move the tokens
for the first time. Every time they move the tokens we can have at most 2(σ + 1)(1 + σn)
new pairs (with different distances than the previous pairs). There are at least n2/4 pairs
with different distances in a n×n torus. Since there is a limited number (≤ σ) of different
orbits that the agents could choose after moving the tokens, there will be left at least
Ω(n2/4−2σ(σ +1)(1+σn)) legal nodes (each one of them paired with s, satisfy property
π).

This means that if we select the size of the torus n > 8σ3 then there are some nodes that
are legal for all orbits (i.e. if we place agents there then anyone’s token is out of reach of
the other).

To find a pair of such nodes, one may execute the following procedure:

- place agent A in a node

- place agent B in one of the n2 − 2(σ + 1)(1 + σn) nodes as in Lemma 4

- after they have moved the tokens find the new different ‘bad’ nodes (which do not satisfy
property π) (at most 2(σ + 1)(1 + σn))

- If the so far selected pair s, s′ does not belong to any of the previous sets of ‘bad’ nodes,
repeat the previous step

- otherwise choose a different pair of starting nodes and repeat the whole procedure 2

This implies the following theorem:

11

Theorem 3. Two agents in a n× n torus with one movable token need at least Ω(log n)
memory to solve the RV problem.

Proof. Suppose that the agents have a memory of r bits. Hence they can have at most
2r states. By Lemma 5 as long as n > 8σ3 the agents cannot perform rendezvous. Hence,
the agents need at least r = Ω(log n) memory in order to perform rendezvous. 2

2.3 An Ω(log n) memory lower bound for rendezvous using O(1) unmovable
tokens

Lemma 6. Consider two mobile agents with σ states. They each have two tokens (iden-
tical to each other). Then we can always (for any configuration of the automatons, i.e.
states and transition function) find a n × n oriented torus, where n = Ω(σ2) and place
the agents so that if they cannot move tokens they cannot rendezvous.

Proof. In view of Lemmas 2, 4 we can select the torus and the starting positions so that
an agent will visit at most (σ + 1)(1 + σn) nodes until it decides to release its second
token and up to that point does not meet the other’s token. Its second token will have
to be released at a ‘short’ distance from the first one since an agent cannot count more
than σ. Using similar arguments as in the proof of Lemma 4 one can show that there are
at least n2 − 5(σ + 1)(1 + σn) pairs of starting nodes that satisfy property π. 2

This implies the following theorem:

Theorem 4. Two agents in a n×n torus with two identical unmovable tokens each, need
at least Ω(log n) memory to solve the RV problem.

Applying similar arguments we can extend the result to a constant number of unmovable
tokens:

Lemma 7. Consider two mobile agents with σ states. They each have a constant number
of k identical tokens. Then we can always (for any configuration of the automatons, i.e.
states and transition function) find an oriented n × n torus, where n = Ω(σ2) and place
the agents so that if they cannot move tokens they cannot rendezvous.

Proof. Using similar arguments as in the proof of Lemma 4 one can show that there are
at least n2 − k(k+2)

2
(σ + 1)(1 + σn) pairs of starting nodes that satisfy property π. 2

Theorem 5. Two agents in a n × n torus with a constant number of unmovable tokens
need at least Ω(log n) memory to solve RV problem.

12

3 Rendezvous

3.1 Rendezvous with Detection (RVD) in a n × n torus using one token
and O(log n) memory

We describe an algorithm which solves the RVD problem of two agents in a n× n torus,
equipped with one unmovable token and O(log n) memory each. Below is a high level
description of the algorithm (Algorithm 1).

First the agent (both agents run the same algorithm) moves in the initial horizontal ring;
it releases its token and it counts steps until it meets a token twice. If its counters differ,
then it can meet the other agent. Otherwise it does the same in the initial vertical ring.
If it does not meet the other and does not decide that rendezvous is impossible (which
means that the agents must have started in different rings), then it searches one by one the
horizontal rings of the torus counting its steps. If at least one of its counters (representing
horizontal or vertical distances) is different than n/2 then it can meet the other agent.
Otherwise it stops and declares rendezvous impossible.

Algorithm 1 Algorithm for RVD with 1 token and O(log n) memory
1: SameRing
2: DifRing

As Algorithm 1 suggests, the agents first execute Procedure SameRing. If they do not
meet each other and they do not decide that rendezvous is impossible, then they must
have started in different rings (c1 = c3). In that case they execute Procedure DifRing.
Their exploration finishes after at most O(n2) steps, while they need O(log n) memory
for counting.

Lemma 8. If the agents are located on the same ring of a n × n torus then Procedure
SameRing is a RVD algorithm. Furthermore the agents are located in the same ring if and
only if counters c1 and c3 differ.

Proof. After c1 + c2 steps the agents see their token. So they are again located at their
starting positions.

If c1 6= c2, this means that the agents started in the same horizontal ring. They execute
Procedure Rendezvous on the horizontal ring and since they have counted different they
can break symmetries and perform rendezvous.

If c2 = c1 then the agents started either on the same horizontal ring at distance n/2 or
in different horizontal rings. In that case (c2 = c1) they try the vertical ring. They count
c3 steps until they meet a token on the vertical ring. It is easy to see that c1 = c3 if and
only if they have started on different rings. Hence since (by hypothesis) they have started
in the same ring it holds c1 6= c3.

13

Procedure SameRing

1: leave your token down
2: go right and count steps until you see a token
3: c1 ←this number of steps
4: go right and count steps until you see a token
5: c2 ←this number of steps
6: if c2 6= c1 then
7: Rendezvous(horizontal, c1, c2)
8: else
9: go down and count steps until you see a token

10: c3 ←this number of steps
11: if c1 = c3/2 or c3 = c1/2 then
12: stop and declare rendezvous impossible
13: end if
14: if c1 6= c3 and c1 6= c3/2 and c3 6= c1/2 then
15: go down and count steps until you see a token
16: c4 ←this number of steps.
17: end if
18: if c4 6= c3 then
19: Rendezvous(vertical, c3, c4)
20: end if
21: end if

Procedure Rendezvous(ring, c1, c2)

1: if ring = horizontal then
2: if c2 > c1 then
3: go right
4: else
5: go left
6: end if
7: end if
8: if ring = vertical then
9: if c2 > c1 then

10: go down
11: else
12: go up
13: end if
14: end if

14

- If c1 = c3/2 or c3 = c1/2 then they have started at distance n/2 in the same horizontal
or vertical ring respectively. Hence (in view of Theorem 1) rendezvous is impossible.

- If c1 6= c3/2 and c3 6= c1/2, since c1 = c2 6= c3 the agents must have started at distance
different than n/2 in the same vertical ring. After c4 steps in the vertical ring they see
their token. Since c4 6= c3 the agents can break symmetries and perform rendezvous by
executing Procedure Rendezvous on the vertical ring. 2

Procedure DifRing

1: repeat
2: go down to the next horizontal ring
3: repeat
4: go right
5: c5 ←the number of steps right
6: until (c5 = c1) OR (you meet a token)
7: until you meet a token
8: c6 ←the number of rings down
9: if c5 = c6 = c1/2 then

10: stop and declare rendezvous impossible
11: else
12: if c6 6= c1/2 then
13: Rendezvous2(c6)
14: else
15: Rendezvous2(c5)
16: end if
17: end if

Procedure Rendezvous2(ct)

1: if ct < c1/2 then
2: reverse horizontal direction and go c5 horizontally and then vertically until you meet your token and wait
3: end if
4: if ct > c1/2 then
5: wait
6: end if

Lemma 9. If the agents are located on different rings of a n × n torus then Procedure
DifRing is a RVD algorithm. Furthermore the agents are located in different rings if and
only if counters c1 and c3 (from Procedure SameRing) are equal.

Proof. in view of the previous lemma, the agents are in different rings initially if and only
if it holds c1 = c3 = n. They explore the other horizontal rings. If they do not find a
token after c1 steps then of course they can be sure that there is no token at that ring.
After exploring c6 horizontal rings, they see a token located c5 steps to the right of their
starting position. If c5 = c6 = c1/2 then (in view of Theorem 1) rendezvous is impossible.
Otherwise:

15

A's token B's token

Fig. 3. Two agents with O(log n) memory and one unmovable token each.

- If c6 6= c1/2 then they can break symmetries as follows: The agent that counted c6 < c1/2
reverses its horizontal direction and goes c5 steps. Then reverses the vertical direction
and moves until it meets a token. It waits there. The other agent just waits. They will
rendezvous there.

If c6 = c1/2 then the agent who counts c5 < c1/2 reverses directions as above and moves.
The other agent waits. 2

An example has been illustrated in Figure 3. First the agents execute Procedure SameRing.
They fail to meet each other because they are in different rings. Then they execute Pro-
cedure DifRing and they rendezvous.

Algorithm 1 together with Lemmas 8, 9 imply the following theorem.

Theorem 6. The Rendezvous with Detection problem on a n× n torus can be solved by
two agents using one unmovable token and O(log n) memory each, in time O(n2).

The above result can be extended for the case of an arbitrary n × m torus. The main
difference in that case is that the relation of counters c1 and c3 can no longer serve us as
before (to distinguish between the two cases: the agents started in the same ring or not).
But still, the agents are able to decide if they have started on the same ring or not as
follows: they explore one by one the horizontal rings travelling c1 steps horizontally. They
will meet a token while going down (passing from one horizontal ring to the next) if and
only if they have started on the same ring. Otherwise, they will meet a token while going
right (before finishing the exploration of a horizontal ring). They can again do Rendezvous
with detection in O(nm) steps as long as they have O(log n+log m) memory each. Hence
the following theorem holds:

16

Theorem 7. The Rendezvous with Detection problem on a n×m torus can be solved by
two agents using one unmovable token and O(log n+log m) memory each, in time O(nm).

3.2 Rendezvous with Detection in a n × n torus using two movable tokens
and constant memory

We define Procedures HorScan and VerScan which will be used in our algorithms.

Procedure HorScan

1: repeat
2: go down, right, up
3: until you meet a token

Procedure VerScan

1: repeat
2: go right, down, left
3: until you meet a token

In these procedures the agent stops immediately after it meets a token. So for example,
if it executes Procedure HorScan and then, after it goes right, it meets a token then it
stops immediately; it does not go up.

We also use Procedure FindTokenHor:

Procedure FindTokenHor

1: repeat
2: HorScan
3: if you meet token up then
4: HorScan
5: go one step down and drop (or move) the second token
6: end if
7: until you meet a token down or right
8: if you meet a token down then
9: SameRing:=1

10: else
11: SameRing:=0
12: end if

An agent following Procedure FindTokenHor, scans one by one the horizontal rings of
the torus until it meets a token while moving down or right. Below we explain Procedure
FindTokenHor and prove some of its properties.

Let the agents release their first token and execute Procedure FindTokenHor. During
execution of HorScan (step 2 of Procedure FindTokenHor), the agent has to meet a token

17

for the first time either after it moved down in the first step, or up or right (he can not
meet a token while going down at a later step of HorScan since it would have met the
token while going right earlier).

If it meets a token after it moved up, then this can be any token: its or the other’s first
token (or its or the other’s second token when it scans a later horizontal ring). However,
if it executes Horscan again (step 4 of Procedure FindTokenHor), then no matter what
was the case, it is easy to see that the first token it meets now is its token (first or second)
and it meets it after it moved up5. Furthermore in this case it is sure that the down ring
had no tokens.

If it meets a token right then it is clear that it is the other’s first token and that the two
agents have started in different rings.

If it meets a token while it goes down then either it is its first token or the other’s first
token. In both cases this means that they have started in the same ring: if it is its first
token it means that it has searched the whole torus and did not meet any other token
while it was moving right.

Therefore the agent exits Procedure FindTokenHor knowing that it has started either in
the same ring with the other agent (if it met a token after it moved down) or in different
rings (if it met a token after it moved right).

We also use Procedure FindTokenVer which scans one by one the vertical rings of the
torus using Procedure VerScan. Procedure FindTokenVer has exactly the same properties
with Procedure FindTokenHor if we replace direction down with right, right with down
and up with left. If we had a guarantee that the agents started in different rings then
an agent executing Procedure FindTokenVer it will exit the procedure, meeting a token
while it moves right. The movements of the agents following these two procedures are
shown in Figure 4. Both procedures FindTokenHor and FindTokenVer need O(n2) time
units.

Procedure FindTokenVer

1: repeat
2: VerScan
3: if you meet token left then
4: VerScan
5: go one step right and drop (or move) the second token
6: end if
7: until you meet a token right

We also use Procedure RVDRing which appeared in [11] for rendezvous with detection in
a ring using two tokens and constant memory. Suppose that the agents start in the same
ring and they release their first token. If they execute the Procedure RVDRing then they
perform rendezvous with detection (see Figure 5).

5 Supposing that there are at most two tokens in the same horizontal ring.

18

start

a

start

b

Fig. 4. a) An agent executing Procedure FindTokenHor and b) an agent executing Procedure FindTokenVer.

Fig. 5. In a ring: two agents with constant memory and two movable tokens each.

Lemma 10. Consider two mobile agents with constant memory on an oriented ring con-
sisting of n nodes. They each have two tokens (identical to each other). If they release their
first tokens and execute Procedure RVDRing then they perform rendezvous with detection.

Proof. Since after step 1 there are 4 tokens in the ring, each agent meets (at step 3) always
the token it has dropped second. Moreover since the agents started at the same time and
do complete cycles, they always meet their forth token at the same time. Consider the
first moment at which after moving forward a token, it touches another token. The other
agent moved forward the token at exactly the same time.

i) suppose that both agents see that their tokens touch other tokens. Since they have
travelled exactly the same distance, this means that the distance between an agent’s
tokens is n/2. They discover this at the same time according to the procedure.

ii) suppose that only one of the agents (say A) sees its token touching another token.
Since the agents travelled the same distance, it means that their initial distances were
different. Now A moves to the next token just to see that it is not touching other tokens.
It will be there in less than n steps, while in exactly n steps the other agent will also be
there. 2

19

Procedure RVDRing

1: move one step right and drop the second token
2: repeat
3: move right until you meet the forth token t
4: move token t one step to the right
5: until there is another token next to t
6: go right until you meet a token
7: if there is another token next to it then
8: stop and declare rendezvous impossible
9: else

10: wait there
11: end if

Procedure RVDRing takes O(n2) time. We also use in our algorithms a similar procedure
with RVDRing for rendezvous with detection on a vertical ring of a torus. We only need
to replace direction right with down.

Combining those procedures we now give the main Procedure SearchTorus that will be
used in the Algorithm RVD2n which is a RVD algorithm for two agents with constant
memory in a n × n torus. A high level description of the Procedure SearchTorus is the
following:

The two agents search one by one the horizontal rings of the torus (using Procedure
FindTokenHor) to discover whether they have started in the same ring. If so, then they
execute Procedure RVDRing. Otherwise they try to ‘catch’ each other on the torus using
a path, marked by their tokens. If they do not rendezvous then they search one by one
the vertical rings of the torus (using Procedure FindTokenVer). They again try to ‘catch’
each other on the torus. If they do not meet this time they declare rendezvous impossible.
Algorithm RVD2n takes O(n2) time.

Theorem 8. The Rendezvous with Detection problem on a n× n torus can be solved by
two agents using two movable tokens and constant memory each, in time O(n2).

Proof. The agents execute Algorithm RVD2n. They release their first token and follow
Procedure FindTokenHor.

If they find a token while going down this means that they have started in the same
ring (horizontal or vertical). If this is the case, then they get synchronized by continuing
moving in the same way (it is like executing Procedure FindTokeHor once more, ignoring
the token that they have just found). Now they are at the same time back at their starting
points knowing that they have started in the same ring. They execute Procedure RVDRing
in the horizontal ring and then (if no rendezvous occurs) in the vertical ring. After that
either they rendezvous or stop, declaring rendezvous impossible (which in view of Theorem
1 is true).

If they find a token while moving right then they know that they have started in different
rings. In that case, after they meet a token right they go up until they meet a token.

20

Procedure SearchTorus

1: release the first token
2: FindTokenHor
3: if SameRing then
4: Synchronize
5: RVDRing on the horizontal ring
6: RVDRing on the vertical ring
7: if not rendezvous then
8: stop and declare rendezvous impossible
9: end if

10: else
11: go up until you meet a token
12: go one step down
13: repeat
14: go left, wait 1 time step
15: until (rendezvous) OR (you meet a token for the second time)
16: if not rendezvous then
17: Synchronize2
18: FindTokenVer
19: go left until you meet a token
20: go one step right
21: repeat
22: go up, wait 1 time step
23: until (rendezvous) OR (you meet a token for the second time)
24: end if
25: end if

Algorithm 2 RVD2n
1: SearchTorus
2: if not rendezvous then
3: stop and declare rendezvous impossible
4: end if

21

T1(A)

T2(A)

T2(B)

T1(B)

Fig. 6. A possible situation in the torus.

Consider agent A with initial vertical distance dy from agent B. We suppose wlog that
agent B is dy ≤ n/2 down of agent A and dx to the right (notice that dx can have any
value lower than n). When A goes up (after it met a token right) it will meet either (again)
B’s first token (when dy = 1 and dx small enough) or B’s second token since every agent
moves its second token in the vertical ring where its first token lies.

Suppose that agent B still executes Procedure FindTokenHor (not having found yet a
token right). We claim that if A goes one step down after it finds B’s (first or second)
token and then left-wait-1-step repeatedly, then either it will meet agent B, or it will find
a token. Let’s see why:

Agent A went down dy ≤ n/2 and then dx until it met the other’s first token. After
that, agent A goes up and meets the other’s second token t2(B)6 since: agent B moves its
second token always in the vertical ring where its first token lies until it meets the other’s
first token. After that the first agent that will possibly move t2(B) is A. Therefore, token
t2(B) has to be somewhere in a ring above the ring where A’s first token t1(A) lies.

Suppose that token t2(B) is in a ring not adjacent to the ring that t1(A) lies. This means
that the other agent B is still searching that ring coming from left to right. Therefore
they will rendezvous.

If token t2(B) is just one horizontal ring above the ring where token t1(A) lies then the
situation is shown in Figure 6. In that case the agents may not rendezvous if agent B
reaches first t1(A). Suppose that they do not rendezvous. We prove now some properties
about dy and dx.

6 If agent A met token t1(B) again while going up, then the agents will rendezvous when A will start to go left,
unless they are in a 2x2 torus

22

Agent A moves as follows: After 3n steps it meets its own token (going up) for the first
time. it takes him another 3n time units to meet its token for the second time plus
one for going down. This is repeated dy − 1 times (until it is one ring above the ring
where the other’s first token lies). It takes another 3(dx − 1) + 2 to meet the other’s first
token. So far it has spent (1 + 6n)(dy − 1) + 3(dx − 1) + 2. Then it goes up dy + 1 steps
until it meets the other’s second token. It goes one step down and another 2(dx − 1) + 1
steps until it meets its own first token for the first time. Totally it took him to be there
(1 + 6n)(dy − 1) + 3(dx − 1) + 2 + dy + 2 + 2(dx − 1) + 1 = 6ndy + 2dy − 6n + 5dx − 1.

Agent B needs (1 + 6n)(n− dy − 1) + 3(n− dx − 1) + 2 = 6n2 − 6ndy − dy − 3dx − 2n− 2
time units to be there.

If the agents do not rendezvous until A meets the token for the second time then this
means that agent B reached that token (t1(A)) first. Thus

6ndy + 2dy − 6n + 5dx − 1 > 6n2 − 6ndy − dy − 3dx − 2n− 2

12ndy + 3dy + 8dx + 1 > 6n2 + 4n

Let dy = n−k
2

, k ≥ 0. The above inequality implies that dx > 3nk
4

+ 5n
16

+ 3k
16
− 1

8
. Since

dx < n, the previous inequality holds only when k = 0. This means that dy = n/2.
Observe that if n is an odd number, then they will always rendezvous.

Then they get synchronized by moving for example left-up-down until they meet the
other’s second token again. They pick it up (they will use it from now on as their second
token) and they go one step down and then repeatedly right-wait-1 until they meet their
first token. It is easy to see that they will reach their first token at the same time.

Now they repeat the same procedure by replacing down with right, right with down, up
with left and left with up (the situation will be like the one shown in Figure 6 rotated by
90 degrees). Using the same arguments as before, if they do not rendezvous, then dx = n/2
and in view of Theorem 1, they can safely decide that rendezvous is impossible. 2

Another algorithm for this case is the following: if the agents discover that they have
started on different rings then they first search whether they are at distance (n/2, n/2)
and if not then they search one by one the horizontal rings of the torus. We have chosen
to present here the first approach since it is expandable to a n×m torus.

3.3 Rendezvous without Detection in a n × m torus using two movable
tokens and constant memory

We now give Algorithm RV2mn which is a RV algorithm for two agents with constant
memory in a n × m torus. Algorithm RV2mn, at first, copies Algorithm RVD2n. If no
rendezvous occurs and no decision is made about its impossibility (i.e., the agents have
started in different rings), the algorithm instructs the agents to mark a rectangle with their

23

tokens on the torus. If n > 2 (the agents can identify such a configuration by executing
an horizontal movement going for example right until they meet the second token; if they
have met at least one node without a token then they conclude that n > 2) then they
execute Procedure Pendulum: they try to shrink the rectangle and eventually meet which
will happen unless they had started at distance (n/2, m/2) (in that case the algorithm
runs forever). We give below Procedure Pendulum.

Procedure Pendulum

1: (* if you hit another token when you move a token at any time in the procedure then stop and wait *)
2: repeat
3: move token to the right
4: repeat
5: go down, left, right
6: until you meet the third token
7: move token to the right
8: repeat
9: go right

10: until you meet the third token
11: move token to the left
12: repeat
13: go up, right, left
14: until you meet a token
15: if you met a token while going up then
16: wait
17: else
18: (* must have met a token while going right *)
19: move token to the left
20: end if
21: repeat
22: go left
23: until you meet the third token
24: until rendezvous

We first prove that if the configuration is as in Figure 7 and either the horizontal dis-
tance between the agents is n/2 or the vertical distance between the agents is m/2 then
Procedure Pendulum solves the Rendezvous without Detection problem for any n > 2.

Lemma 11. Suppose that there is a rectangle marked by four tokens in a n × m torus,
where n > 2. Suppose also that either the horizontal distance is n/2 or the vertical distance
is m/2. There are two agents situated on the upper left and bottom right corners of the
rectangle (see Figure 7). Then Procedure Pendulum is an RV algorithm. That is will lead
the agents to rendezvous in O(n2 + m2) time, unless their distance is (n/2, m/2).

Proof. Suppose that dx = n/2 and dy < m/2. Let agent A be the agent which has to go
down distance dy until he meets a token. The other agent B will have to go a distance
m − dy > dy until it meets a token. After the two agents move the tokens right, they go
down until they meet the third token (notice that they will surely meet the token since
they go down-left-right). When agent A meets the second token T1(A), agent B meets also

24

T1(A)T2(A)

T2(B)

T1(B)

Fig. 7. Two agents with constant memory and two movable tokens each in a n×m torus.

the second token T1(B), since both agents have travelled the same distance. Therefore
when agent A reaches T1(B), agent B is either on its way to meet the third token T2(B),
or has already met it.

– If agent A reaches T2(B) before agent B, then it must meet it while going up, since
agent B has not yet moved the token. In that case agent A waits and eventually agent
B will be there.

– If agent A reaches T2(B) after agent B has left but B has not met again T2(B) during
its horizontal movement then agent A will meet agent B.

– If agent A reaches T2(B) after agent B has left and B has already met T2(B) as the
second token during its horizontal movement then agent B will reach, move and leave
token T1(A) before agent A gets there. After that, agent B will reach token T2(A)
before agent A meets token T2(A) as its third token, since agent B travels a vertical
distance m− dy and agent A travels a vertical distance m + dy (notice also that agent
B will not meet token T2(A) while going up). Therefore either the agents will meet, or
agent B will reach, move and leave first token T1(B), which was its starting position.
However now agent A is closer than in the beginning. For exactly the same reasons,
the agents maintain their relative positions, i.e., agent B reaches, moves and leaves a
token before agent A reaches, moves and leaves the same token. Since their distance
decreases, they will rendezvous.

If dx < n/2 and dy = m/2. Let agent A be the agent which has to go right distance dx

until he meets a token. The other agent B will have to go a distance n− dx > dx until it
meets a token. After the two agents move the tokens right they go down and they meet
at the same time their third token (notice that they will meet it for sure since they go
down-left-right). Hence agent A is at T2(A) exactly when agent B is at T2(B). After n+dx

25

T1(A)T2(A)

T2(B)

T1(B)

(a)

T2(B)

(b)

T1(A)

T2(A)

T1(B)

Fig. 8. a) A special configuration where n = 2. b) One agent A (upper left corner) moves the token right and
then is moving in cycles in the inner area moving down (one step at each cycle) token T1(A) until it is next to
token T2(A). The other agent B (down right corner) moves the token right and then is moving in cycles in the
outside area moving down (one step at each cycle) token T1(B) until it is next to token T2(B). The agents do not
move at all tokens T2(A) and T2(B).

steps, agent A reaches, moves and leaves T1(B) and agent B has already moved and left
T2(B). Because of this agent A will meet token T2(B) not while going up.

– If agent A reaches T1(A) before agent B moved and left it then the two agents will
meet.

– If agent A reaches T1(A) after agent B has left then agent B will reach, move and leave
first token T2(A), since dy = m/2. Hence during the horizontal movement from T2(A)
to T1(B), either the agents will meet or agent B will first move and leave token T1(B),
which was its starting position. However now agent A is closer than in the beginning.
For exactly the same reasons, the agents maintain their relative positions, i.e., agent B
reaches, moves and leaves a token before agent A reaches, moves and leaves the same
token. Since their distance decreases, they will rendezvous.

2

For the remaining case, if n = 2, the configuration is as in Figure 8(a). In that case the
agents execute Procedure RVDRing2 which basically simulates the idea of the Procedure
RVDRing. One agent A (upper left corner) moves the token right and then is moving in
cycles in the inner area moving down (one step at each cycle) token T1(A) until it is next
to token T2(A). The other agent B (down right corner) moves the token right and then
is moving in cycles in the outside area moving down (one step at each cycle) token T1(B)
until it is next to token T2(B). The agents do not move at all tokens T2(A) and T2(B).
The distance covered by agent A until it meets and move again token T1(A) is different
than the distance covered by agent B until it meets and move again token T1(B). Agent A
walks from the inside, while agent B walks from the outside. This is illustrated in Figure
8(b).

26

Procedure RVDRing2

1: move token one step right
2: move one token, one step down
3: move left,right
4: repeat
5: move down, left, right until you meet a token
6: if you met a token while going down then
7: wait there
8: end if
9: move up, right, left until you meet the second token right

10: if you met a token while going up then
11: wait there
12: end if
13: move down until you meet a token
14: move one token, one step down
15: move left,right
16: until there is another token to the left
17: go up until you meet a token
18: if there is another token next to it then
19: stop and declare rendezvous impossible
20: else
21: wait there
22: end if

The following Algorithm RV2mn is a RV algorithm for 2 agents having constant memory
in a n × m torus. In fact one of the following things could happen: either the agents
rendezvous, or they detect that they are in the same ring in symmetrical positions or
the algorithm runs forever (in that case they are at horizontal distance n/2 and vertical
distance m/2).

Algorithm 3 RV2mn
1: SearchTorus
2: if not rendezvous then
3: Synchronize3
4: BuildRectangle
5: Synchronize4
6: if n > 2 then
7: Pendulum
8: else
9: RVDRing2

10: end if
11: end if

Theorem 9. The Rendezvous without Detection problem on an arbitrary n × m torus
can be solved by two agents using two movable tokens and constant memory each, in time
O(n2 + m2).

Proof. The agents follow Algorithm RV2mn. They first copy Algorithm RVD2n (as in the
case of a n× n torus). We first prove that if they do not rendezvous after horizontal and

27

Procedure BuildRectangle

1: go right until you meet a token
2: move that token one step right
3: repeat
4: go up, wait 1 time step
5: until you meet a token
6: go left until you meet a token
7: go down until you meet a token

vertical scanning then either their horizontal distance dx = n/2 or their vertical distance
dy = m/2 (or both).

Let’s see what happens during the horizontal scanning. Consider agent A whose vertical
movement until it reaches agent B’s ring is dy = m−k

2
, where k ≥ 0 is an integer. Agent A

travelled 6ndy+2dy−6n+5dx−1 while agent B travelled 6nm−6ndy−3n−3dx+m−dy−2
(see the proof of Theorem 8). Suppose that they do not rendezvous. This means that:

6ndy + 2dy − 6n + 5dx − 1 > 6nm− 6ndy − 3n− 3dx + m− dy − 2

12ndy + 3dy + 8dx + 1 > 6nm + 3n + m

Since dy = m−k
2

, the above inequality implies:

dx >
3

4
nk +

3

16
k +

3n

8
− m

16
− 1

8

The horizontal movement of agent A to reach B’s token is either dx = n−δ
2

or dx = n+δ
2

,
where δ ≥ 0 is an integer. For these two cases we get from the previous inequality:

dx =
n− δ

2
: 8n− 8δ > 12nk + 3k + 6n−m− 2 (1)

dx =
n + δ

2
: 8n + 8δ > 12nk + 3k + 6n−m− 2 (2)

After picking up their second token and synchronizing (in a different way that suggested
in the proof of Theorem 8 but still easy to implement) they do the vertical scanning.
Consider the agent whose horizontal movement until it reaches the other’s agent ring is
d′x = n−δ

2
, where δ ≥ 0. This agent travelled 6md′x + 2d′x − 6m + 5d′y − 1 while the other

agent travelled 6nm−6md′x−3m−3d′y +n−d′x−2. Suppose that they do not rendezvous.
This means that:

6md′x + 2d′x − 6m + 5d′y − 1 > 6nm− 6md′x − 3m− 3d′y + n− d′x − 2

12md′x + 3d′x + 8d′y + 1 > 6nm + 3m + n

Since d′x = n−δ
2

,

d′y >
3

4
mδ +

3

16
δ +

3m

8
− n

16
− 1

8

28

As before we have:

d′y =
m− k

2
: 8m− 8k > 12mδ + 3δ + 6m− n− 2 (3)

d′y =
m + k

2
: 8m + 8k > 12mδ + 3δ + 6m− n− 2 (4)

Now observe the following:

– if dx = n−δ
2

then d′x = dx and d′y = dy = m−k
2

and the relations (1), (3) hold,

– if dx = n+δ
2

then d′y = m+k
2

and the relations (2), (4) hold.

In the first case, if we add the relations (1), (3) we get:

(3n− 5

4
)(1− 4k) + (3m− 5

4
)(1− 4δ) +

26

4
> 0 (5)

In the second case, if we add the relations (2), (4) we get:

(3n +
11

4
)(1− 4k) + (3m +

11

4
)(1− 4δ)− 3

2
> 0 (6)

It is easy to see now that if k > 0 and δ > 0 both relations (5), (6) are false (assuming
n, m > 1). Therefore either k = 0 or δ = 0 (or both). Hence either dy = m/2 or dx = n/2
(or both).

Now the two agents get synchronized, build the rectangle and run the Procedure Pendulum
which according to Lemma 11 ends up to rendezvous unless dx = n/2 and dy = m/2. 2

An interesting question which naturally follows is: what is the relation of n and m for
which Algorithm RV2mn is indeed a RVD algorithm? The answer is given by the following
lemma.

Lemma 12. If after the horizontal and vertical scanning of Algorithm RV2mn the agents
do not rendezvous and n−1

10
≤ m ≤ 2n+17 then their distance is (n/2, m/2) and therefore

rendezvous is impossible.

Proof. The agents execute Algorithm RV2mn. Recall that if the agents do not rendezvous
after the horizontal scanning, then it must hold dx > 3

4
nk + 3

16
k + 3n

8
− m

16
− 1

8
.

Suppose that k ≥ 1. Then dx > 3
4
nk + 3

16
k + 3n

8
− m

16
− 1

8
≥ 9n

8
+ 1

16
− m

16
. It holds that

dx < n, since the agents did not start on the same ring. Therefore it must hold that
9n
8

+ 1
16
− m

16
< n− 1 → m > 2n+17. The contraposition implies that if m ≤ 2n+17 then

k = 0. This means that dy = m/2.

After the vertical scanning it holds d′y = m
2

> 3
4
mδ + 3

16
δ + 3m

8
− n

16
− 1

8
.

Suppose that δ ≥ 1. Then 3
4
mδ + 3

16
δ + 3m

8
− n

16
− 1

8
≥ 9m

8
+ 1

16
− n

16
. Therefore it must

hold 9m
8

+ 1
16
− n

16
< m

2
→ m < n−1

10
. The contraposition of this concludes the lemma. 2

29

Therefore by Lemma 12 if we knew that n−1
10

≤ m ≤ 2n+17 then Algorithm RV2mn would
be a RVD algorithm for the n×m torus.

3.4 Rendezvous with Detection in a n × m torus using three movable
tokens and constant memory

If the agents have 3 tokens then we can extend the Algorithm RVD2n to get a RVD
algorithm for a n × m torus. The idea is the following: If the agents do not meet while
they copy Algorithm RVD2n then they mark a rectangle on the torus using their two
tokens each. Next they release their third token to the right of their starting position.
They travel on this rectangle (one agent from inside and the other from outside), each
time moving one step the fifth token they meet: first they move it to the right until it
hits another token and then down until it touches a token. Next they go left until they
meet a token and then up until they meet a token. If at that point they see two tokens
adjacent then they declare rendezvous impossible. Otherwise they wait until rendezvous
which will occur in less than n + m time. Algorithm RVD3mn takes O(n2 + m2) time. The
Synchronize procedures can be implemented easily.

Theorem 10. The Rendezvous with Detection problem on an arbitrary n×m torus can
be solved by two agents using three movable tokens and constant memory each, in time
O(n2 + m2).

Proof. The agents follow Algorithm RVD3mn. Suppose that after executing Procedure
SearchTorus they do not rendezvous neither decide that it is impossible. This means that
either their horizontal distance dx = n/2 or their vertical distance dy = m/2 (or both). The
agents get synchronized and form a rectangle in the torus. One of the agents (say A) trav-
els (2dx+2dy)(dx+dy−1)+dx+dy until it sees its third token touches for the second time a
token. The other agent B travels (2(n−dx)+2(m−dy))(n−dx+m−dy−1)+n−dx+m−dy

until it sees its third token touches for the second time a token.

Suppose wlog that dx = n/2 and dy ≤ m/2. If dy = m/2 then the two agents always move
at the same time their tokens and at the end (when their third token is adjacent for the
second time to a token) they find out that the other’s token is adjacent to another token
as well. Therefore they declare rendezvous impossible.

If dy < m/2 then by the time agent A sees its third token touching for the second time a
token, agent B has traveled at most dx+dy−1 < n/2+m/2−1 times the rectangle. Thus B
needs at least one more round to move its third token close to another token. This means
another 2(n−dx)+2(m−dy) ≥ n+m steps for agent B. But in dx +dy ≤ n/2+m/2 steps
agent A will meet B’s third token. Therefore if A waits there, B will eventually come. 2

30

Algorithm 4 RVD3mn
1: SearchTorus
2: if not rendezvous then
3: Synchronize3
4: BuildRectangle
5: Synchronize4
6: go right one step and drop the third token
7: repeat
8: go right until you meet a token
9: go down until you meet a token

10: go left until you meet a token
11: go up until you meet a token
12: go right until you meet a token
13: move that token one step to the right
14: until the token hits another token
15: repeat
16: go down until you meet a token
17: go left until you meet a token
18: go up until you meet a token
19: go right until you meet a token
20: go down until you meet a token
21: move that token one step down
22: until the token is adjacent to another token
23: go left until you meet a token
24: go up until you meet a token
25: if there are two tokens adjacent then
26: stop and declare rendezvous impossible
27: else
28: wait
29: end if
30: end if

31

RVD requires Θ(log log n) RVD requires Θ(log n)

RV in constant mem RVD requires Θ(log n)

RVD in constant mem n x n: RVD in constant mem
n x m: RV in constant mem

RVD in constant mem

Fig. 9. Ring vs Torus.

4 Conclusion

In this paper we investigated on the number of tokens and memory, two agents need in
order to rendezvous in an anonymous oriented torus.

It appears that there is a strict hierarchy on the power of tokens and memory with respect
to rendezvous: a constant number of unmovable tokens are less powerful than two movable
tokens. While the hierarchy collapses on three tokens (we gave an algorithm for rendezvous
with detection in a n×m torus when the agents have constant memory each), it remains
an open question if three tokens are strictly more powerful than two with respect to
rendezvous with detection. It is also interesting that although a movable token is more
powerful than an unmovable one (we showed that an agent with one unmovable token
cannot visit all the nodes of a torus with a properly selected size unless it has Ω(log n)
memory, while it could do it with a constant memory if it could move its token) it appears
that this power is not enough with respect to rendezvous; the agents with one movable
token each, still require Ω(log n) memory to rendezvous in the torus. The results for ring
and torus topologies are shown in Figure 9.

As this is the first publication in the literature that studies tradeoffs between the number
of tokens, memory, knowledge and power the agents need in order to meet on a torus
network, a lot of interesting questions remain open:

32

- Can we improve the time complexity for rendezvous without detection on a n × m
torus using constant memory? Can we improve the time complexity for rendezvous with
detection on a n× n torus using constant memory?

- What is the lower memory bound for two agents with two movable tokens each in order
to do rendezvous with detection in a n × m torus? In particular, can they do it with
constant memory?

- What is the situation in a d-dimensional torus? Is it the case that with d − 1 movable
tokens, rendezvous needs Ω(log n) memory while with d movable tokens and constant
memory rendezvous with detection can be done? How does this change if the size of the
torus is not the same in every dimension?

- What are the results if the torus is not oriented? If the torus is asynchronous?

- Finally, an interesting problem is that of many agents trying to rendezvous (or gathering)
in a torus network.

References

1. S. Alpern, The Rendezvous Search Problem, SIAM Journal of Control and Optimization, 33, pp. 673-683,
1995. (Earlier version: LSE CDAM Research Report, 53, 1993.)

2. S. Alpern, Rendezvous Search: A Personal Perspective, Operations Research, 50, No. 5, pp. 772-795, 2002.
3. S. Alpern and V. Baston, Rendezvous on a Planar Lattice, Operations Research, 53, No. 6, pp. 996-1006,

2005.
4. S. Alpern and S. Gal, The Theory of Search Games and Rendezvous, Kluwer Academic Publishers, Norwell,

Massachusetts, 2003.
5. E.J. Anderson and S. Fekete, Two-dimensional Rendezvous Search, Operations Research, 49, No. 1, pp.

107-188, 2001.
6. L. Barriere, P. Flocchini, P. Fraigniaud, and N. Santoro, Election and Rendezvous of Anonymous Mobile

Agents in Anonymous Networks with Sense of Direction, Proceedings of the 9th International Colloquium on
Structural Information and Communication Complexity (SIROCCO), pp. 17-32, 2003.

7. V. Baston and S. Gal, Rendezvous Search When Marks Are Left at the Starting Points, Naval Research
Logistics, 47, No. 6, pp. 722-731, 2001.

8. A. Dessmark, P. Fraigniaud, and A. Pelc, Deterministic Rendezvous in Graphs, 11th Annual European Sym-
posium on Algorithms (ESA), pp. 184-195, 2003.

9. S. Dobrev, P. Flocchini, G. Prencipe, and N. Santoro, Multiple agents rendezvous in a ring in spite of a black
hole, Symposium on Principles of Distributed Systems (OPODIS ’03), LNCS 3144, pp. 34-46, 2004.

10. P. Flocchini, E. Kranakis, D. Krizanc, N. Santoro, and C. Sawchuk, Multiple Mobile Agent Rendezvous in
the Ring, LATIN 2004, LNCS 2976, pp. 599-608, 2004.

11. L. Gasieniec, E. Kranakis, D. Krizanc, X. Zhang, Optimal Memory Rendezvous of Anonymous Mobile Agents
in a Uni-directional Ring. In proceedings of SOFSEM 2006, 32nd International Conference on Current Trends
in Theory and Practice of Computer Science January 21 - 27, 2006 Merin, Czech Republic, SVLNCS, 2006,
to appear.

12. E. Kranakis, D. Krizanc, N. Santoro, and C. Sawchuk, Mobile Agent Rendezvous Search Problem in the Ring,
International Conference on Distributed Computing Systems (ICDCS), pp. 592-599, 2003.

13. C. Sawchuk, Mobile Agent Rendezvous in the Ring, PhD thesis, Carleton University, School of Computer
Science, Ottawa, Canada, 2004.

14. CL. E. Shannon, Presentation of a Maze-Solving Machine, in 8th Conf. of the Josiah Macy Jr. Found.
(Cybernetics), pp. 173-180, 1951.

15. X. Yu and M. Yung, Agent Rendezvous: A Dynamic Symmetry-Breaking Problem, in Proceedings of ICALP
’96, LNCS 1099, pp. 610-621, 1996.

33

