INRIA

French public National Research Institut in Computer Sciences and Applied Mathematics Institut National de Recherche en Informatique et Automatique

Research fields:

- Applied Mathematics, Computation and Simulation
- Algorithmics, Programming, Software and Architecture
- Networks, Systems and Services, Distributed Computing
- Perception, Cognition and Interaction
- Digital Health, Biology and Earth

 \approx 3000 researchers in 8 research centers in France: Bordeaux, Grenoble, Lille, Nancy, Paris, Rennes, Saclay (near Paris), Sophia Antipolis

INRIA research centers

INRIA Sophia Antipolis Méditerranée

Research center in Sophia since 1983, with an antenna in Montpellier

More than 650 persons: researchers, ingeneers, aministration, PhD students, external collaborators, from more than 50 different countries

Half of the 35 research teams are joint with academic partners (Universities Côte d'Azur - UCA, Bologna, Athens, ...), research institutions (CNRS, INRA, ...)

Team APICS

Analysis and Inverse Problems for Control and Signal processing INRIA Sophia, http://team.inria.fr/apics/

Permanent staff:

- Laurent Baratchart
- Sylvain Chevillard
- Juliette Leblond
- Martine Olivi
- Fabien Seyfert

PhD students & post-doc.:

- Jeebin Bose
- Adam Coolman (post-doc.)
- Sébastien Fueyo
- David Martinez Martinez
- Konstantinos Mavreas
- Christos Papageorgakis

Assistant: Marie-Line Meirinho

Students in APICS

Gist of the team APICS

Develop function-theoretic tools, effective in:

- system identification and design,
- inverse boundary value problems.

Mathematical techniques

- Complex and harmonic analysis.
- System and circuit theory.
- Potential theory and elliptic PDE's.
- Approximation theory and optimization.

Target applications

- Design of microwave devices
 ~> filters, multiplexers, amplifiers.
- Inverse source problems in 3-D → EEG/MEG, paleomagnetism, geomagnetism.
- Inverse free boundary problems in 2-D.

APICS, collaborations and partners

- Some regular academic collaborators:
 - Sophia Antipolis: CMA Mines ParisTech, INRIA team Athena, LEAT (CNRS, Univ. Côte d'Azur)
 - Universities Aix-Marseille, Bordeaux I, CEREGE (CNRS Aix-en-P.), Lab. Poems (CNRS-ENSTA-INRIA Saclay)
 - Universities of Maastricht (The Netherlands), Cork (Ireland), Vrieje Universiteit Brussels-ELEC (Belgium)
 - MIT (Associated INRIA team Impinge, MIT-France prog.), Vanderbilt University, Indiana Univ. Purdue Univ. at Indianapolis (USA)

- ロ ト - 4 回 ト - 4 □ - 4

- RMC Kingston (Canada), XLIM (Limoges)
- Transfer:
 - CNES-Toulouse (French Space Agency), DGA
 - Thales Alenia Space (telecommunication satellites)
 - Flextronics, SG electronics
 - Medical partners: Hospital La Timone (Marseille)
 - BESA GmbH company (Munich, Germany, imaging soft.)

Inverse source problems in medical imaging

Juliette Leblond

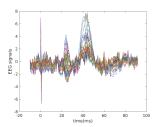
INRIA Sophia Antipolis, France, Team APICS

(Analysis and Inverse Problems for Control and Signal processing)

・ロト・日本・モート モー うへぐ

Inverse problems in EEG

• Measures of electric potential u, electrodes on part of scalp



evoked potentials

(somatosensory, left median nerve)

hospital la Timone, Marseille

INRIA team Athena, Sophia

• *u* solution to

(σ head tissues conductivity, Maxwell equations, quasi-static case)

$$abla \cdot (\sigma \,
abla u) = \sum_{k=1}^{K} p_k \cdot
abla \, \delta_{C_k}$$
 such that $\partial_n u = 0$ on the scalp

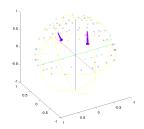
 estimate unknown quantity K of current sources C_k in the brain & moments p_k

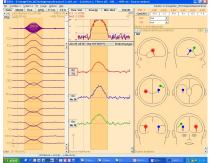
Assumptions: 3-layers spherical head geometry,

piecewise constant conductivity $\rightsquigarrow \Delta u = \sum_{k=1}^{K} p_k \cdot \nabla \delta_{C_k}$ in the brain, $|p_k| = |p_k(t)|$

EEG, electroencephalography







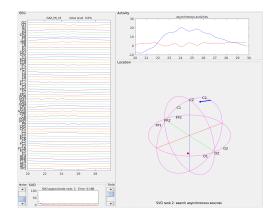
\rightsquigarrow sources estimation?

Software FindSources3D- μ

EEG record → main activity

(C2 right hemishpere)

- 1. SVD or time selection
- 2. data transmission scalp \rightsquigarrow cortex
- 3. best quadratic rational approximation on sections
- 4. clustering of poles



 $\rightsquigarrow K = 2$ sources C_1 , C_2 , moments p_1 , p_2

(electrodes: O occiput, F frontal)

Outline

 \rightsquigarrow inverse potential problems, with applications to medical imaging (EEG) source estimation, after data transmission step $$_{\rm steps\ 2,\ 3,\ 4}$$

→ data analysis inversion (ill-posed → well-posed), deconvolution issues, regularization, approximation (best constrained), discretization

 \rightsquigarrow tools

best quadratic rational approximation 2D (planar sections in 3D) harmonic and holomorphic functions Hardy-Hilbert spaces with boundary norm Fourier, spherical harmonics bases, matlab FindSources3D

→ inverse source problems in planetary sciences (paleomagnetism)

From joint work.s with:

L. Baratchart, M. Clerc, J.-P. Marmorat, T. Papadopoulo, N. Schnitzler

and:

B. Atfeh, A. Ben Abda, F. Ben Hassen, T. Jordanov, M. Olivi,C. Papageorgakis, S. Rigat, M. Zghal

Inverse problems, comments

Physical examples and applications, from Maxwell equations:

- EEG, electroencephalography, medical imaging, neurosciences
- paleomagnetism, planetary sciences, lunar magnetism



Conductivity and Laplace-Poisson PDEs, comments

Elliptic partial differential equations in \mathbb{R}^n dimension n = 2, 3 with source term in divergence form

div
$$(\sigma \operatorname{grad} u) = \operatorname{div} \mathbf{J}$$
 or $\nabla \cdot (\sigma \nabla u) = \nabla \cdot \mathbf{J}$

Models for potentials u, subject to localized electromagnetic activity \mathbf{J}

(Piecewise-) constant conductivity σ

 $\rightsquigarrow \sigma \Delta u = \nabla . \mathbf{J} = 0$ outside support of \mathbf{J}

Solutions to time harmonic / quasi-static Maxwell equations

gravitational, Newton

Inverse problems, comments

 $abla \cdot (\sigma \nabla u) = \nabla \cdot \mathbf{J} \text{ in } \mathbb{R}^n$

Data (measurements): (electrical or magnetic) values of potential u or / and components of associated field $\sim \nabla u$ taken away from support of source distribution **J**

Inverse problems:

- source estimation: recover ${f J}$ or its support
- data transmission:

recover non measured u or / and components of abla u

- conductivity estimation

Assumptions concerning:

- conductivity σ
- support and models for ${\boldsymbol{\mathsf{J}}}$
- available data, their location

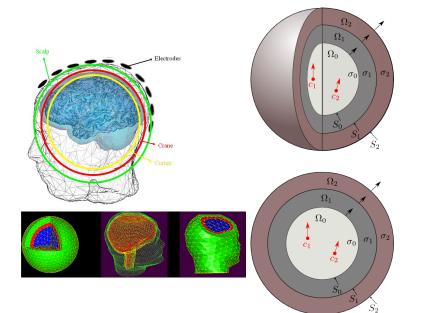
$$\rightsquigarrow \sigma \Delta u = \nabla . \mathbf{J}$$

steps 3, 4

needed, for well-posedness

step 2

Spherical head models



◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

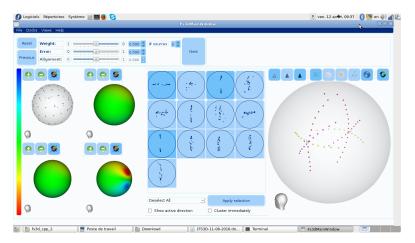
Inverse source recovery problems in EEG

• Step 1. Singular value decomposition (SVD) of EEG matrix

(time instant t_i , electrodes e_i), suitable linear combination of principal components (get rid of the time)

• Steps 2, 3, 4:

softwares FindSources3D



Operators

Put $X = (x_1, x_2, x_3) \in \mathbb{R}^3$ grad $= \nabla = \begin{pmatrix} \partial_{x_1} \\ \partial_{x_2} \\ \partial_{\cdots} \end{pmatrix}$ with $\partial_{x_i} = \frac{\partial}{\partial x_i}$ div = $\nabla \cdot$. curl = $\nabla \times$ Laplacian = $\Delta = \operatorname{div}(\operatorname{grad}) = \nabla \cdot \nabla = \partial_{x^2}^2 + \partial_{x^2}^2 + \partial_{x^2}^2$ $\nabla . (\sigma \nabla u) = \nabla \sigma . \nabla u + \sigma \Delta u = \nabla . \mathbf{J}, \ \sigma \text{ ct } \rightsquigarrow \sigma \Delta u = \nabla . \mathbf{J}$

normal derivative
$$\partial_n u = \frac{\partial u}{\partial n} = \nabla u \cdot n$$

Maxwell's equations (electrostatics)

Quasi-static assumptions E electric field Faraday: $\nabla \times \mathbf{E} = \mathbf{0} \Rightarrow \mathbf{E} = -\nabla u$ *u* electric potential (scalar) Non magnetic medium (brain), electric activity **J** (primary cerebral current) Current density: $\mathcal{J} = \sigma \mathbf{E} + \mathbf{J} = -\sigma \nabla u + \mathbf{J}$ $(\sigma \text{ electric conductivity})$ Charge conservation: $\nabla \cdot \mathcal{J} = 0$ (from Ampère's law...) $\Rightarrow |\nabla \cdot (\sigma \nabla u) = \nabla \cdot \mathbf{J}| \text{ or div } (\sigma \operatorname{grad} u) = \operatorname{div} \mathbf{J}$

 \rightsquigarrow conductivity PDE with source term in div form

Back to EEG model

Spherical head geometry $B = \mathbb{B}$ with 3 homogeneous layers Ω_i Piecewise constant conductivity $\sigma = \sigma_i$ $\nabla \cdot (\sigma \nabla u) = \nabla \cdot J$ in B

Unknown: pointwise dipolar sources $\delta_{C_k} \in \Omega_0 \subset B$

 $\rightsquigarrow \sigma \nabla u = \nabla \cdot \mathbf{J} \text{ in } \Omega_0 \text{ and } = 0 \text{ outside } \Omega_0$

with moments $\mathbf{p}_k \in \mathbb{R}^3$

spherical shells, ball; σ given

$$\mathbf{J} = \sum_{k=1}^{K} \mathbf{p}_k \, \delta_{C_k} \text{ supported in } \Omega_0$$

(innermost layer Ω_0 ball, brain)

Data (outer boundary, scalp $\partial B = S_2$):

- normal current flux $\partial_r u = 0$
- pointwise values of potential u at electrodes locations points $\in S_2$

After step 1 (fixed t, or SVD), static EEG signal

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

 $\partial_r u = \partial_n u \sim \nabla u \cdot n$

Inverse source recovery problems in EEG

• Piecewise constant conductivity σ in layered head models:

$$\rightsquigarrow \left\{ \begin{array}{ll} \Delta u = 0 \text{ outside the brain} & (\text{step 2}) \\ \\ \Delta u = \sum_{k=1}^{K} p_k \cdot \nabla \delta_{C_k} \text{ in the brain} & (\text{steps 3, 4}) \end{array} \right.$$

- Step 2: data transmission from scalp S_2 to cortex S_0 (cortical map.)
- Steps 3, 4: source estimation from u on S_0 (singular part u_s)

$$u_{s}(x) = \sum_{k=1}^{K} \frac{\langle p_{k}, x - C_{k} \rangle}{|x - C_{k}|^{3}}$$

- Clustering in various directions $\rightsquigarrow K$ sources C_k , moments p_k

EEG inverse problems

$$\begin{cases} \Delta u = 0 & \text{in } \Omega_1 \,, \, \Omega_2 \,, \, \text{step 2} \\ \Delta u = \sum_{k=1}^{K} \mathbf{p}_k \,. \, \nabla \,\delta_{C_k} & \text{in } \Omega_0 \quad (\sigma_0 = 1) \,, \, \text{steps 3, 4} \\ u \text{ and } \sigma \partial_r u \text{ continuous across } S_i \\ \text{measures of } u \text{ on } \Gamma_0 \subset S_2 \,, \, \partial_r u_{|_{S_2}} = 0 \end{cases}$$

Step 2: data transmission from $\Gamma_0 \subset S_2$ to S_0 through S_1

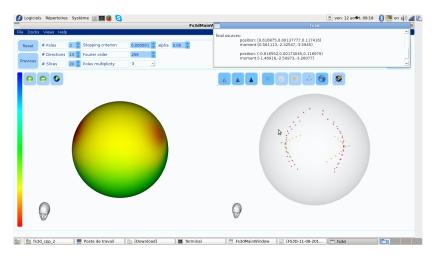
3D Cauchy-type issue, cortical mapping, boundary element methods (regularization needed) best constrained approximation, spherical harmonics

Assume step 2 to be solved, focus on steps 3, 4.

Steps 3, 4

Steps 3, 4: source localisation in Ω_0 from data on S_0 using 2D rational approximation techniques on plane sections of Ω_0

Softwares FS3D



Inverse EEG source problems

 $\Delta u = \nabla \cdot \mathbf{J}$ in Ω_0

Assume:

- support supp $\boldsymbol{J}\subset\Omega_0,$ ball in \mathbb{R}^3
- measurements available on $\Gamma_0\subset\partial\Omega_0$ (after transmission step 2)
- pointwise dipolar source(s), $C_k \in \Omega_0$, with moments $\mathbf{p}_k \in \mathbb{R}^n$:

$$\mathbf{J} = \sum_{k=1}^{K} \mathbf{p}_k \, \delta_{C_k} \,, \ K \ge 1 \quad (K = 1 \rightsquigarrow \mathbf{J} = \mathbf{p} \, \delta_C)$$

Source localization steps 3, 4: find $C_k \in \Omega_0$ (and K, P_k) from available measurements of u, $\partial_r u$ on $\partial\Omega_0$ ($\rightsquigarrow \Gamma_0 \subseteq \partial\Omega_0$)

Inverse source problems

 $\Delta u = \nabla \cdot \mathbf{J}$ in Ω_0

Convolution by fundamental solution E_n of Laplace equation

$$E_3(X)=rac{-1}{4\pi|X|}\,,\,\,\Delta E_3=\delta\,\, ext{in}\,\,\mathbb{R}^3$$

 \rightsquigarrow integral (Green) formula for u

$$4\pi \simeq 1$$

$$u(X) = \iiint \nabla \cdot \mathbf{J}(Y) E_3(X - Y) d$$
$$\simeq \iiint \frac{\mathbf{J}(Y) \cdot (X - Y)}{|X - Y|^3} dY$$

$$= \iiint \mathbf{J}(Y) \cdot \nabla E_3(X-Y) \, d \, Y$$

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > Ξ のへで

Y

Inverse source problems

$$u(X) \simeq \iiint \frac{\mathbf{J}(Y) \cdot (X - Y)}{|X - Y|^3} \, d \, Y \qquad \mathbf{J} = \sum_{k=1}^K \mathbf{p}_k \, \delta_{C_k}$$

From above expressions:

 $u = u_s + harmonic f.$ in Ω_0

$$u_s(X) = \sum_{k=1}^{K} rac{\langle \mathbf{p}_k, X - C_k
angle}{|X - C_k|^3}$$
 available on S_0

 \rightarrow analysis of the denominator $|X - C_k|^3$ \rightarrow behaviour of $|X - C_k|^2$ on circles of S₀

planar sections

EEG inverse problems, comments

Data: between 30 and 100 values of u at electrodes on S_2 (and $\partial_r u = 0$)

Unknowns: quantity K of sources, 6 K real numbers (components of C_k , p_k)

Algorithm:(after steps 1, 2)• Step 3:
$$u$$
 and $\partial_r u$ on $S_0 \rightsquigarrow u_s$ on S_0 $\rightsquigarrow f_p$ on sliced circles T_p 2D $\rightsquigarrow K$ singularities $z_{k,p}$ in D_p RARL2

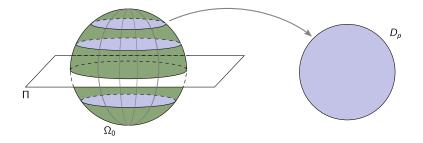
• Step 4: clustering $z_{k,p}$, $1 \le k \le K$, $1 \le p \le P \rightsquigarrow C_k$, p_k

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Planar sections, $3D \rightsquigarrow 2D$

Spherical brain Ω_0 , planar sections \perp to axis $p = 1, \dots, P$

 \rightsquigarrow family of disks D_p in planes parallel to Π , boundaries circles T_p

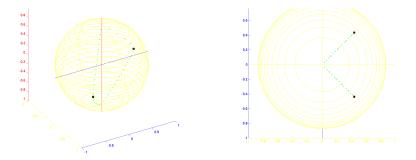


$$u_s$$
 on $S_0 \rightsquigarrow f_p = u_s^2$ on T_p

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Inverse source problems, data analysis

 $\begin{array}{l} \rightarrow \text{ 2D inverse problems, } p = 1 \cdots P \\ \text{Given } f_p = u_s^2 \text{, on circles } T_p & \text{find its singularities } z_{k,p} \text{. in } D_p \end{array}$



Then, find sources C_1, C_2 (.) in Ω_0

above, z_1 , z_2 in Π

э

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

2D sections \rightarrow 3D

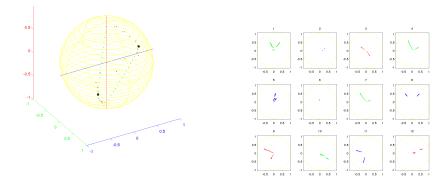
- Put z_k for the complex affix of C_k in Π ∩ S₀ (projections, z_k ≠ 0) and z_{k,p} for the K singularities of f_p in disk D_p (p = 1 · · · P, k = 1 · · · K)
 The complex arguments of (z_{k,p}) do not depend on p and equal the argument of z_k
 The modulus |z_{k,p}| is maximum w.r.t. p in section D_{p*}
 - containing C_k (or closest to) and $z_{k,p*} = z_k$
- 2D inverse boundary problems in Π_p : for $p = 1 \cdots P$, $\Pi_p \simeq \mathbb{R}^2 \simeq \mathbb{C}$

Given f_p on T_p , recover its K singularities $z_{k,p}$ in D_p

• Sort out $z_{k,p}$ in $k = 1 \cdots K$, $p = 1 \cdots P$ (argument, modulus) in order to get C_k in Ω_0

2D sections \rightarrow 3D ball

Triple poles approximate singularities



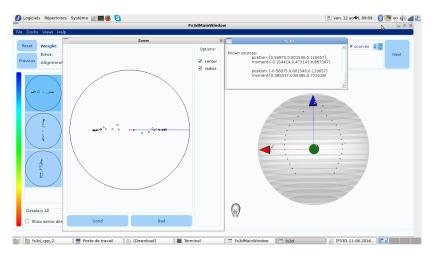
12 different directions Π , poles viewed from "above"

(日)、

æ

Other sources C_1, C_2

Softwares FindSources3D



In 2D sections $\Pi_p \simeq \mathbb{C}$

 f_p function in disk $D_p \subset \mathbb{C}$ with radius r_p , boundary T_p

$$f_{p}(z) = f(z) = \left[\sum_{k=1}^{K} \frac{\varphi_{k,p}(z)}{(z - z_{k,p})^{3/2}}\right]^{2}$$
$$= \sum_{k=1}^{K} \frac{\varphi_{k,p}^{2}(z)}{(z - z_{k,p})^{3}} + \sum_{\substack{j,k=1\\j \neq k}}^{K} \frac{\varphi_{k,p}(z) \varphi_{j,p}(z)}{(z - z_{k,p})^{3/2} (z - z_{j,p})^{3/2}}$$

Singularities $z_{k,p}$ in D_p K branchpoints and K triple poles linked with sources C_k (coordinates z_k , x_{3k}) (see below, same argument, max. modulus)

 $f_{|_{\mathcal{T}_p}} \in L^2(\mathcal{T}_p)$ $\varphi_{k,p}$ smooth functions in D_p , depend on p_k, z_k, x_{3k}, r_p

Step 3: given f on T_p , recover its K singularities $z_{k,p}$ in D_p

In 2D sections $\Pi_p \simeq \mathbb{C}$ (tools 1)

$$u(X) = \sum_{k=1}^{K} \frac{\langle p_k, X - C_k \rangle}{|X - C_k|^3}, X \neq C_k$$

$$f(z) = u_{|T_p}^2(X) \qquad C_k = (x_{1k}, x_{2k}, x_{3k}), z_k = x_{1k} + ix_{2k}$$

For $X \in D_p$, $z = x_1 + ix_2$, $z \in D_p$:

$$x_{3p}^2 + r_p^2 = 1$$

$$|X - C_k|^2 = (x_1 - x_{1k})^2 + (x_2 - x_{2k})^2 + (x_{3p} - x_{3k})^2 = |z - z_k|^2 + \rho_{pk}^2$$

$$= (z - z_k)(\overline{z} - \overline{z}_k) + \rho_{pk}^2 \qquad \rho_{pk} = x_{3p} - x_{3k}$$

On T_p , $\overline{z} = r_p^2/z$:
$$|X - C_k|^2 = (z - z_k)(\frac{r_p^2}{z} - \overline{z}_k) + \rho_{pk}^2$$

$$= -\frac{\overline{z}_k}{z}(z - z_{k,p})(z - z_{k,p}^{ref}), z_{k,p} = z_k \times \mathbb{R}\text{-valued } f_{p,k}^o$$

$$|X - C_k|^3 \rightsquigarrow (z - z_{k,p})^{3/2}$$

 $|z_{k,p} z_{k,p}^{ref}| = r_p^2, \ z_{k,p} \in D_p \Rightarrow z_{k,p}^{ref} \notin D_p$

Best $L^2(T)$ rational approximation (t. 2)

Best $L^2(T)$ (quadratic) rational approximant with poles in Dof degree less than n: $D = D_p$, $T = T_p$

$$R_n = \frac{\pi_n}{q_n}$$

with π_n , q_n (algebraic) polynomials, deg $\pi_n \leq \deg q_n \leq n$, zeroes of q_n belonging to D, verifying:

$$\parallel f - \frac{\pi_n}{q_n} \parallel = \min_{\pi,q} \parallel f - \frac{\pi}{q} \parallel$$

for $L^2(T)$ norm, among such π , q [Baratchart & al]

Zeroes of $q_n = \text{poles}$ of R_n , approximate singularities z_{kp} of f_p in D...

Best $L^2(T)$ rational approximation (t. 3)

Existence, non-uniqueness

Since f has poles and branchpoints in D: deg $q_n = n$, $\forall n \ge 0$

Compute R_n for increasing values of degree nuntil $L^2(T)$ error small enough: \rightsquigarrow estimation of number K of sources! $n \ge K$

Constructive aspects:Fourier coefficientsefficient algorithms to generate local minimaSchur parameters

Behaviour of poles of R_n as *n* increases... $\rightsquigarrow z_{k,p} \rightsquigarrow C_k!$

Also AAK best uniform meromorphic approximation, $L^{\infty}(T)$

Fourier series, Hardy spaces (t. 4)

$$f \in L^2(T)$$
: $f = F_a + F_o$

$$\begin{array}{ll} F_a \text{ holomorphic outside } D \simeq \mathbb{D} & \text{(vanishes at infinity)} \\ F_o \text{ holomorphic in } D & \text{(analytic in z)} \end{array}$$

Get $F_a \in$ Hardy space of analytic functions in $\mathbb{C} \setminus \overline{D}$ bounded $L^2(T)$

$$\text{Fourier coeff.}, \quad f(e^{i\theta}) = \sum_{l \in \mathbb{Z}} F_l \; e^{il\theta} \;, \; \sum_{l \in \mathbb{Z}} |F_l|^2 < \infty \Rightarrow F_a(z) = \sum_{l < 0} F_l \; z^l \;, \; |z| \geq 1$$

 F_a and f share same singularities $z_{k,p}$ inside D

2K

Poles of approximants (t. 5)

f: finitely many poles and branchpoints $z_{k,p}$ in D κ of both... smooth behaviour near T

Convergence results, deep potential theory: $n \to \infty$, simple poles

the poles of R_n converge to these singularities (weak sense, capacity)

Localisation results:

 $(\varphi \text{ analytic in } D)$

strong, also triple poles

when f(z) close to $\varphi(z)/(z-z_{k,p})^3$ in $L^2(T)$, section Π_p next to C_k

first poles of R_n accumulate to $z_{k,p}$

In 2D sections

Best quadratic rational approximation on T_p :

for $n \ge 0$, find polynomials π_n , q_n with degree $p_n \le$ degree q_n and q_n with zeroes in D_p that minimize

$$\left\|f_p - \frac{\pi_n}{q_n}\right\|_{L^2(T_p)}$$

among such functions - increase degree *n* until error small enough on $T_p \rightsquigarrow K$... - zeroes of $q_n =$ poles of π_n/q_n , approximate singularities z_{kp} of f_p in D_p

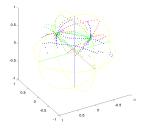
Even better here, get triple poles:

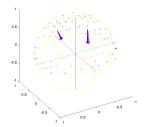
minimize

$$\left\|f_p - \frac{\pi_n}{q_n^3}\right\|_{L^2(\mathcal{T}_p)}$$

Pointwise sources recovery

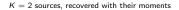
Best L² rational approximation on plane sections (circles, 12 directions) [software FindSources3D (matlab), APICS-ATHENA]





(日) (同) (日) (日)

э

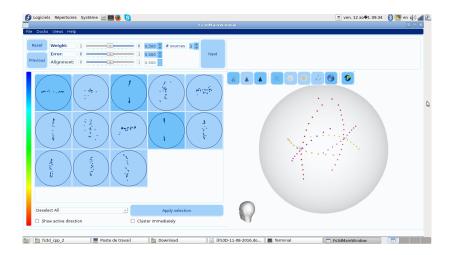


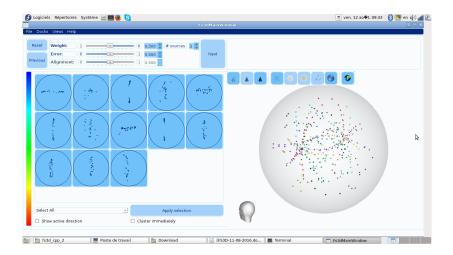
Other sources C_1, C_2

FS3D-bolis: modular ergonomical release

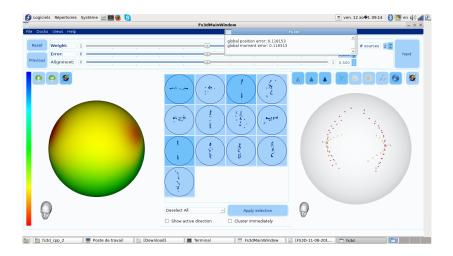
0	Logiciels Répertoires S	iystème 🚊 🏼 ۏ 😒					🖪 ven. 12 ao�t, 12:02	🚯 💌 en 🥼 📶 🖳
				Fs3dMainWind	ow			
File	Docks Views Help							
			0 0,500 \$ # source 1 0,500 \$ 1 0,500 \$	s 2 🗘 Next				
	Deselect All	Ľ	Apply selec	tion				
	Show active direction	C	Cluster immediately					
	fs3d_cpp_2	📕 Poste de travail	🔯 Download	FS3D-11-08-201	🔋 🕘 Zimbra: Réceptio	Terminal	Fs3dMainWindow	

<□ > < @ > < E > < E > E のQ @



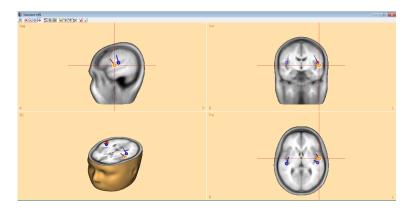


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ



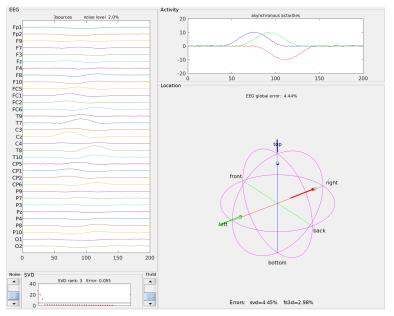
Actual heads

Actual and estimated sources and moments, from simulated data by BESA (with the courtesy of BESA GmbH)



FindSources3D: allows to find K and to localize time correlated sources

FindSources3D- μ

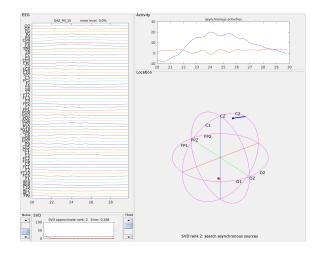


◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ● ●

FindSources3D- μ

Evoked potentials

left wrist, hospital la Timone, Marseille

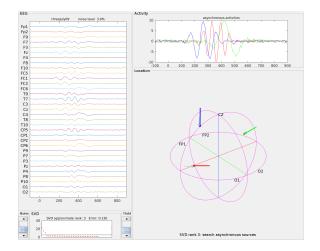


SVD, suitable combination of principal components $(|p_k| = |p_k(t)|)$ Main activity: right hemishpereelectrodes: O occiput, F_frontal...

FindSources3D- μ

Other dataset

BESA GmbH, Germany



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Perspectives

FS3D-µ:
 use MEG data (magnetoencephalography, la Timone hosp., Athena INRIA team)

measures of normal component of magnetic field: $B_n(x) = \frac{x}{|x|} \cdot \sum_{k=1}^{K} \frac{p_k \times C_k}{|x - C_k|^3}$

- Time window selection, more realistic geometries
- Conductivity estimation issues (EIT, Electrical Impededance Tomography) recover unknown conductivity values uniqueness issues, σ₁ skull [PhD CP]
- silent sources?
- other geometries?
- other elliptic operators (and PDEs)?
- approximation by 3D singular functions?

(ellipsoids, realistic)

Schrödinger, Helmholtz, time t

 $\nabla (1/|X - X_p|), X_p \in \Omega$

Short bibliography

Clerc, Leblond, Marmorat, Papadopoulo, Source localization using rational approximation on plane sections (2012)

Baratchart, Leblond, Marmorat, Inverse sources problem in a 3D ball from best meromorphic approximation on 2D slices (2006)

Leblond, Paduret, Rigat, Zghal, Source localization in ellipsoids by best meromorphic approximation in planar sections (2008)

FindSources3D:

http://www-sop.inria.fr/apics/FindSources3D/

Applications to paleomagnetism

Inverse source estimation problems

with L. Baratchart, S. Chevillard, J.-P. Marmorat, K. Mavreas Cerege-CNRS (Aix-en-Provence, ANR MagLune), Moon rocks (NASA), lunometer

Measures of magnetic field (magnetometer)

 \rightsquigarrow magnetization (in rock)?

 \rightsquigarrow past and future of the Earth magnetic field

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Maxwell's equations (magnetostatics)

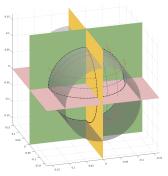
Quasi-static assumptions H magnetic field Ampère's law, no external current density ($\mathcal{J} = 0$): $\nabla \times \mathbf{H} = 0 \Rightarrow \mathbf{H} = -\nabla u$ *u* magnetic potential (scalar) magnetic flux density **B**: $\nabla \cdot \mathbf{B} = 0$ with constitutive relation: $\mathbf{B} = \mu_0 (\mathbf{H} + \mathbf{M})$ for magnetization \mathbf{M} μ_0 magnetic permeability

$$\Rightarrow \Delta u = \nabla \cdot \mathbf{M} = \operatorname{div} \mathbf{M}$$

 \rightsquigarrow Laplace-Poisson PDE, yet with source term in div form

Inverse magnetization problems in Moon rocks

Mesures on magnetic field on surrounding circles in 3 \perp directions Lunometer at NASA, Cerege, CNRS [ANR]



 \rightsquigarrow estimate magnetic dipole in rock

[PhD KM]

$$\Delta u = p \cdot \nabla \delta_{\mathcal{C}} = \nabla \cdot \mathbf{M} , \ \mathbf{M} = p \delta_{\mathcal{C}}$$

from values of field
$$B = \nabla u$$
, $u(x) = \frac{\langle p, x - C \rangle}{|x - C|^3}$ on circles

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Inverse source problems in magnetization

Planetary sciences, paleomagnetism, magnetic field of rocks samples \rightsquigarrow magnetization?

Moon rocks

Cerege-CNRS

 meteorites, SQUID measurements, almost planar (thin) support of source term (distribution) M in 3D

EAPS-MIT, Cambridge, MA, USA; associated Inria team Impinge,

http://www-sop.inria.fr/apics/IMPINGE/

Baratchart, Hardin, Lima, Saff, Weiss, Characterizing kernels of operators related to thin-plate magnetizations via generalizations of Hodge decompositions (2013)

Baratchart, Chevillard, Leblond, Silent and equivalent magnetic distributions on thin plates, to appear

Futures

• Moon rocks: several dipoles

[PhD KM]

(mean value of M)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Inverse magnetization problems in small samples

(Impinge associated team with MIT)

- Net moment estimation
- Full magnetization recovery
- 3D samples