

From polygons and museums to molecules and massive data

Ioannis Emiris

<u>http://erga.di.uoa.gr</u> Dept Informatics & Telecoms, U.Athens

November 7, 2012

Geometry in the Computer

I.Emiris * 1/28

Overview

Museums and Triangles

Molecules

Massive

Geometry in the Computer

-∢ ≣⇒

▲ 同 ▶ → ● 三

Antiquity

<ロト <部ト < 注ト < 注ト

Continuous vs Discrete

Outline

Museums and Triangles

Molecules

Massive

≣ ▶ ≣ ∽૧લ I.Emiris ∗ 5/28

<≣⇒

< 🗇 > < 🖃 >

Museum Guards

< 17 ▶

<- ₹ € ► < ₹ €

Art gallery Theorems: a classic

- Minimizing the number of point-guards to cover a simple polygon is NP-hard.
- ▶ In general, $\lfloor n/3 \rfloor$ guards cover a *n*-gon.
- The main algorithmic step is triangulation. It is in O(n): deterministic [Chazelle], or simpler randomized algorithm.

► Applications: visibility, telecom networks, extension to 3D.

The best triangulation ...

Boris Delaunay [1934]

Geometry in the Computer

... equivalent to a distance partition

Graphics

Geometry in the Computer

Computational Geometry Algorithms Library

- Efficient algorithms
- Exact computation
- ► C++ / STL library
- Open project, mostly European

CGAL triangulation / mesh

CGAL convex hull / arrangement

Outline

Museums and Triangles

Molecules

Massive

।.Emiris * 14/28

▲圖▶ ▲ 国▶ ▲ 国▶

Dogma

< 同 ▶

(★ 문) (★ 문)

Docking

 $\alpha \text{-shapes:}$ success story and major tool in bioinformatics

3D structure

CGAL

$\text{Different } \alpha$

[Edelsbrunner]

Outline

Museums and Triangles

Molecules

Massive

Geometry in the Computer

► = ∽ ९ 0 I.Emiris * 21/28

▲御▶ ▲ 陸▶ ▲ 臣

3D

 $http://www.youtube.com/watch?v{=}OqVNQmX_J28$

< 17 ▶

Databases

Approximate Voronoi diagram

https://github.com/akonskarm/AVD

Data structures: towards data mining

 ϵ -nearest neighbor in msec among 1M points in > 100 dimensions.

Curse of dimensionality

Tree based methods, e.g. AVD: For fixed *d*, space = $O(n/\epsilon^d)$, ϵ -nearest neighbor in $O(\log(n/\epsilon))$. [Mount, Har-Peled, et al.]

Locality sensitive hashing: polynomial-time in d, exponential in ϵ . [Indyk, Motwani, et al.]

High dimensions: towards structure

Bioinformatics, the Internet, GIS, Image processing: they all easily provide data in e.g. 100, or 1000 dimensions.

Current goal: Exploit structure [Guibas]

And then?

Geometry in the Computer

।.Emiris ∗ 28/28

<ロ> <同> <同> < 同> < 同>