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Abstract. We consider the problem of locating a black hole in syn-
chronous anonymous networks using finite state agents. A black hole
is a harmful node in the network that destroys any agent visiting that
node without leaving any trace. The objective is to locate the black hole
without destroying too many agents. This is difficult to achieve when
the agents are initially scattered in the network and are unaware of the
location of each other. In contrast to previous results, we solve the prob-
lem using a small team of finite-state agents each carrying a constant
number of identical tokens that could be placed on the nodes of the net-
work. Thus, all resources used in our algorithms are independent of the
network size.

We restrict our attention to oriented torus networks and first show that
no finite team of finite state agents can solve the problem in such net-
works, when the tokens are not movable, i.e., they cannot be moved by
the agents once they have been released on a node. In case the agents
are equipped with movable tokens, we determine lower bounds on the
number of agents and tokens required for solving the problem in torus
networks of arbitrary size. Further, we present a deterministic solution
to the black hole search problem for oriented torus networks, using the
minimum number of agents and tokens, thus providing matching upper
bounds for the problem.

1 Introduction

The exploration of an unknown graph by one or more mobile agents is a classical
problem initially formulated in 1951 by Shannon [27] and it has been extensively
studied since then (e.g., see [1, 8, 20]). Recently, the exploration problem has
also been studied in unsafe networks which contain malicious hosts of a highly
harmful nature, called black holes. A black hole is a node which contains a
stationary process destroying all mobile agents visiting this node, without leaving
any trace. In the Black Hole Search problem the goal for the agents is to locate
the black hole within finite time. In particular, at least one agent has to survive
knowing all edges leading to the black hole. The only way of locating a black
hole is to have at least one agent visiting it. However, since any agent visiting a



black hole is destroyed without leaving any trace, the location of the black hole
must be deduced by some communication mechanism employed by the agents.
Four such mechanisms have been proposed in the literature: a) the whiteboard
model in which there is a whiteboard at each node of the network where the
agents can leave messages, b) the ‘pure’ token model where the agents carry
tokens which they can leave at nodes, c) the ‘enhanced’ token model in which
the agents can leave tokens at nodes or edges, and d) the time-out mechanism
(only for synchronous networks) in which one agent explores a new node while
another agent waits for it at a safe node.

The most powerful inter-agent communication mechanism is having white-
boards at all nodes. Since access to a whiteboard is provided in mutual exclusion,
this model could also provide the agents a symmetry-breaking mechanism: If the
agents start at the same node, they can get distinct identities and then the dis-
tinct agents can assign different labels to all nodes. Hence in this model, if the
agents are initially co-located, both the agents and the nodes can be assumed to
be non-anonymous without any loss of generality.

In asynchronous networks and given that all agents initially start at the same
safe node, the Black Hole Search problem has been studied under the whiteboard
model (e.g., [9, 12–14]), the ‘enhanced’ token model (e.g., [10, 15, 28]) and the
‘pure’ token model in [18]. It has been proved that the problem can be solved
with a minimal number of agents performing a polynomial number of moves.
Notice that in an asynchronous network the number of the nodes of the network
must be known to the agents otherwise the problem is unsolvable ([13]). If the
graph topology is unknown, at least ∆ + 1 agents are needed, where ∆ is the
maximum node degree in the graph ([12]). Furthermore the network should be
2-connected. It is also not possible to answer the question of whether a black
hole exists in the network.

In asynchronous networks, with scattered agents (not initially located at the
same node), the problem has been investigated for the ring topology ([11, 13]) and
for arbitrary topologies ([4, 19]) in the whiteboard model while in the ‘enhanced’
token model it has been studied for rings ([16, 17]) and for some interconnected
networks ([28]).

The consideration of synchronous networks makes a dramatic change to the
problem. Now two co-located distinct agents can discover one black hole in any
graph by using the time-out mechanism, without the need of whiteboards or
tokens. Moreover, it is now possible to answer the question of whether a black
hole actually exists or not in the network. No knowledge about the number of
nodes is needed. Hence, with co-located distinct agents, the issue is not the
feasibility but the time efficiency of black hole search. The issue of efficient black
hole search has been studied in synchronous networks without whiteboards or
tokens (only using the time-out mechanism) in [5, 7, 22–24] under the condition
that all distinct agents start at the same node. However when the agents are
scattered in the network, the time-out mechanism is not sufficient anymore.

Indeed the problem seems to be much more difficult in the case of scattered
agents and there are very few known results for this scenario. In this paper we



study this version of the problem using very simple agents that can be modeled as
finite state automata. Our objective is to determine the minimum resources, such
as number of agents and tokens, necessary and sufficient to solve the problem in
a given class of networks. For the class of ring networks, recent results [3] show
that having constant-size memory is not a limitation for the agents when solving
this problem. We consider here the more challenging scenario of anonymous torus
networks of arbitrary size. We show that even in this case, finite state agents
are capable of locating the black hole in all oriented torus networks using only a
few tokens. Note that the exploration of anonymous oriented torus networks is
a challenging problem in itself, in the presence of multiple identical agents [26].
Since the tokens used by the agents are identical, an agent cannot distinguish
its tokens from those of another agent.

While the token model has been mostly used in the exploration of safe net-
works, the whiteboard model is commonly used in unsafe networks. The ‘pure’
token model can be implemented with O(1)-bit whiteboards, for a constant num-
ber of agents and a constant number of tokens, while the ‘enhanced’ token model
can be implemented having a O(log d)-bit whiteboard on a node with degree d.
In the whiteboard model, the capacity of each whiteboard is always assumed to
be of at least Ω(log n) bits, where n is the number of nodes of the network. In all
previous papers studying the Black Hole Search problem under a token model
apart from [18] and [3], the authors have used the ‘enhanced’ token model with
agents having non-constant memory. The weakest ‘pure’ token model has been
used in [18] for co-located non-constant memory agents equipped with a map in
asynchronous networks.

The Black Hole Search problem has also been studied for co-located agents
in asynchronous and synchronous directed graphs with whiteboards in [6, 24].
In [21] they study the problem in asynchronous networks with whiteboards and
co-located agents without the knowledge of incoming link. A different dangerous
behavior is studied for co-located agents in [25], where the authors consider a ring
and assume black holes with Byzantine behavior, which do not always destroy
a visiting agent.

Our Contributions: We consider the problem of locating the black hole in an
anonymous but oriented torus containing exactly one black hole, using a team of
identical agents that are initially scattered within the torus. Henceforth we will
refer to this problem as the BHS problem. We focus our attention on very simple
mobile agents. The agents have constant-size memory, they can communicate
with other agents only when they meet at the same node and they carry a
constant number of identical tokens which can be placed at nodes. The tokens
may be movable (i.e. they can be released and picked up later) or unmovable (i.e.
they cannot be moved by the agents once they have been released on a node).
We prove the following results:

– No finite team of agents can solve the BHS problem in all oriented torus
networks using a finite number of unmovable tokens.

– For agents carrying any finite number of movable tokens, at least three agents
are required to solve the problem.



– Any algorithm for solving BHS using 3 agents requires more than one mov-
able token per agent.

– The BHS problem can be solved using three agents and only two movable
tokens per agent, thus matching both the lower bounds mentioned above.

In Section 2, we formally describe our model, giving the capabilities of the
agents. In Section 3, we prove lower bound on the number of agents and tokens
needed to solve the BHS problem in the torus. In Section 4, we present determin-
istic algorithms for BHS: (i) using k ≥ 3 agents carrying 3 movable tokens per
agents, and (ii) using k ≥ 4 agents carrying 2 movable tokens per agent. We also
present a more involved algorithm that uses exactly 3 agents and 2 tokens per
agent thus meeting the lower bounds. All our algorithms are time-optimal and
since they do not require any knowledge about the dimensions of the torus, they
work in any synchronous oriented torus, using only a finite number of agents
having constant-size memory. Due to space limitations, proofs of some of theo-
rems and formal descriptions of the algorithms are omitted and can be found in
[2].

2 Our Model

Our model consists of k ≥ 2 anonymous and identical mobile agents that are
initially placed at distinct nodes of an anonymous, synchronous torus network
of size n×m, n ≥ 3, m ≥ 3. We assume that the torus is oriented, i.e., at each
node, the four incident edges are consistently marked as North, East, South and
West. Each mobile agent owns a constant number of t identical tokens which
can be placed at any node visited by the agent. In all our protocols a node may
contain at most three tokens at the same time and an agent carries at most three
tokens at any time. A token or an agent at a given node is visible to all agents
on the same node, but is not visible to any other agent. The agents follow the
same deterministic algorithm and begin execution at the same time and being
at the same initial state.

At any single time unit, a mobile agent occupies a node u of the network
and may 1) detect the presence of one or more tokens and/or agents at node u,
2) release/take one or more tokens to/from the node u, and 3) decide to stay at
the same node or move to an adjacent node. We call a token movable if it can
be moved by any mobile agent to any node of the network, otherwise we call the
token unmovable in the sense that, once released, it can occupy only the node
in which it has been released.

Formally we consider a mobile agent as a finite Moore automaton A =
(S, S0, Σ, Λ, δ, φ), where S is a set of σ ≥ 2 states; S0 is the initial state; Σ is the
set of possible configurations an agent can see when it enters a node; δ : S×Σ →
S is the transition function; and φ : S → Λ is the output function. Elements
of Σ are quadruplets (D,x, y, b) where D ∈ {North, South, East, West, none}
is the direction through which the agent has arrived at the node, x is the
number of tokens (at most 3) at that node, y is number of tokens (at most
3) carried by the agent and b ∈ {true, false} indicates whether there is



at least another agent at the node or not. Elements of Λ are quadruplets
(P, s,X,M) where P ∈ {put, pick} is the action performed by the agent on
the tokens, s ∈ {0, 1, 2, 3} is the number of tokens concerned by the action A,
X ∈ {North, South, East, West, none} is the edge marked as dangerous by the
agent, and M ∈ {North, South, East, West, none} is the move performed by the
agent. Note that the agent always performs the action before the marking and
the marking before the move.

Note that all computations by the agents are independent of the size n×m of
the network since the agents have no knowledge of n or m. There is exactly one
black hole in the network. An agent can start from any node other than the black
hole and no two agents are initially co-located. Once an agent detects a link to
the black hole, it marks the link permanently as dangerous (i.e., disables this
link). Since the agents do not have enough memory to remember the location of
the black hole, we require that at the end of a black hole search scheme, all links
incident to the black hole (and only those links) are marked dangerous and that
there is at least one surviving agent. Thus, our definition of a successful BHS
scheme is slightly different from the original definition. The time complexity of
a BHS scheme is the number of time units needed for completion of the scheme,
assuming the worst-case location of the black hole and the worst-case initial
placement of the scattered agents.

3 Impossibility results

In this section we give lower bounds on the number of agents and the number
and type of tokens needed for solving the BHS problem in any anonymous,
synchronous and oriented torus.

3.1 Agents with unmovable tokens

We will prove that any constant number of agents carrying a constant number
of unmovable tokens each, can not solve the BHS problem in an oriented torus.
The idea of the proof is the following: We show that an adversary (by looking
at the transition function of an agent) can always select a big enough torus and
initially place the agents so that no agent visits nodes which contain tokens left
by another agent, or meets with another agent. Moreover there are nodes on the
torus never visited by any agent. Hence the adversary may place the black hole
at a node not visited by any of the agents to make the algorithm fail. This result
is based on ideas presented earlier in [26].

Theorem 1. For any constant numbers k, t, there exists no algorithm that
solves BHS in all oriented tori containing one black hole and k scattered agents,
where each agent has a constant memory and t unmovable tokens.

3.2 Agents with movable tokens

We show the following impossibility results.



Lemma 1. Two agents carrying any number of movable tokens cannot solve the
BHS problem in an oriented torus even if the agents have unlimited memory.

Proof. Assume w.l.o.g. that the first move of the agents is going East. Suppose
that the black hole has been placed by an adversary at the East neighbor of an
agent. This agent vanishes into the black hole after its first move. The adversary
places the second agent such that it vanishes into the black hole after its first
vertical move, or it places the agent in a horizontal ring not containing the black
hole if the agent never performs vertical moves. Observe that the trajectories of
the two agents intersect only at the black hole and neither can see any token left
by the other agent. Neither of the agents will ever visit the East neighbor of the
black hole and thus, they will not be able to correctly mark all links incident to
the black hole.

Thus, at least three agents are needed to solve the problem. We now deter-
mine a lower bound on the number of tokens needed by three scattered agents
to solve BHS.

Lemma 2. There exists no algorithm that could solve the BHS problem in all
oriented tori using three agents with constant memory and one movable token
each.

Proof. (Sketch) Clearly, in view of Theorem 1, an algorithm which does not
instruct an agent to leave its token at a node, cannot solve the BHS problem.
Hence any potentially correct algorithm should instruct an agent to leave its
token down. Moreover this decision has to be taken after a finite number of
steps (due to agents’ constant memory). After that the agents visit new nodes
until they see a token. We can show that if the agents visit only a constant
number of nodes before returning to meet their tokens they cannot visit all
nodes of the torus. If they move their tokens each time they see them and repeat
the previous procedure (i.e., visit a constant number of nodes and return to meet
their tokens), we can show that they will find themselves back at their initial
locations and initial states without having met with other agents and leaving
some nodes unvisited. An adversary may place the black hole at an unvisited
node to make the algorithm fail. Now consider the case that at some point an
algorithm instructs the agents to visit a non-constant number of nodes until they
see a token (e.g., leave your token down and go east until you see a token). Again
we can show that an adversary may initially place the agents and the black hole,
and select the size of the torus so that two of the agents enter the black hole
without leaving their tokens close to it: The agent (say A) that enters first into
the black hole has been initially placed by an adversary so that it left its token
more than a constant number of nodes away from the black hole. The adversary
initially places another agent B so that it enters the black hole before it meets
A’s token. Furthermore B leaves its token more than a constant number of nodes
away from the black hole. Hence the third agent, even if it meets the tokens left
by A or B, it could not decide the exact location of the black hole.



Theorem 2. At least three agents are necessary to solve the BHS problem in an
oriented torus of arbitrary size. Any algorithm solving this problem using three
agents requires at least two movable tokens per agent.

4 Algorithms for BHS in a torus using movable tokens

Due to the impossibility result from the previous section, we know that unmov-
able tokens are not sufficient to solve BHS in a torus. In the following, we will
use only movable tokens. To explore the torus an agent uses the Cautious-Walk
technique [13] using movable tokens. In our algorithms, a Cautious-Walk in di-
rection D with x tokens means the following (see Procedure Cautious-walk): (i)
the agent releases a sufficient number of tokens such that there are exactly x
tokens at the current node, (ii) the agent moves one step in direction D and if
it survives, the agent immediately returns to the previous node, (iii) the agent
picks up the tokens released in step (i) and again goes one step in direction D. If
an agent vanishes during step (ii), any other agent arriving at the same location
sees x tokens and realizes a potential danger in direction D. Depending on the
algorithm an agent may use 1, 2, or 3 tokens to implement the Cautious-Walk.

Procedure Cautious-walk(Direction D, integer x)

/* Procedure used by the agent to explore the nodes */

1 Put tokens until there are x tokens;
2 Go one step along D and then go back;

/* test if the node in direction D is the black hole */

3 Pick up the tokens released in the first step;
4 Go one step along D;

4.1 Solving BHS using k ≥ 3 agents and 3 tokens

We show that three agents suffice to locate the black hole if the agents are
provided with three tokens using the algorithm presented below.

Algorithm BHS-torus-33:
An agent explores one horizontal ring at a time and then moves one step South
to the next horizontal ring and so on. When exploring a horizontal ring, the
agent leaves one token on the starting node. This node is called the homebase
of the agent and the token left (called homebase token) is used by the agent to
decide when to proceed to the next ring. The agent then uses the two remaining
tokens to repeat Cautious-Walk in the East direction until it has seen twice a
node containing one token. Any node containing one token is a homebase either
of this agent or of another agent. The agent moves to the next horizontal ring
below after encountering two homebases. However before moving to the next
ring, it does a cautious walk in the South direction with three tokens (the two
tokens it carries plus the homebase token). If the agent survives and the node
reached by the agent has one token, the agent repeats a cautious walk in the East



direction (with two tokens) until it reaches an empty node. The agent can now
use this empty node as its new homebase. It then repeats the same exploration
process for this new ring leaving one token at its new homebase.

Whenever the agent sees two or three tokens at the end of a cautious-walk,
the agent has detected the location of the black hole: If there are two (resp.
three) tokens at the current node, the black hole is the neighboring node w to
the East (resp. South). In this case, the agent stops its normal execution and
then traverses a cycle around node w, visiting all neighbors of w and marking
all the links leading to w as dangerous.

Theorem 3. Algorithm BHS-torus-33 correctly solves the BHS problem with 3
or more agents.

Proof. An agent may visit an unexplored node only while going East or South. If
one agent enters the black hole going East (resp. South), there will be two (resp.
three) tokens on the previous node and thus, no other agent would enter the
black hole through the same link. This implies that at least one agent always
survives. Whenever an agent encounters two or three tokens at the end of a
Cautious-Walk, the agent is certain of the location of the black hole since any
alive agent would have picked up its Cautious-Walk tokens in the second step of
the cautious walk (The agents move synchronously always using cautious walk
and taking three steps for each move).

4.2 BHS using k ≥ 4 agents and 2 tokens each

We now present an algorithm that uses only two tokens per agent, but requires
at least 4 agents to solve BHS.

During the algorithm, the agents put two tokens on a node u to signal that
either the black hole is on the South or the East of node u. Eventually, both
the North neighbor and the West neighbor of the black hole are marked with
two tokens. Whenever there is a node v such that there are exactly two tokens
at both the West neighbor of v and the North neighbor of v, then we say that
there exists a Black-Hole-Configuration (BHC) at v.

Algorithm BHS-torus-42:

The agent puts two tokens on its starting node (homebase). It then performs a
Cautious-Walk in the East direction. If the agent survives, it returns, picks up
one token and repeats the Cautious-Walk with one token in the East direction
(leaving the other token on the homebase) until it reaches a node containing one
or two tokens.

– If the agent reaches a node u containing two tokens, then the black hole is
the next node on the East or on the South (See Property C of Proposition 1).
The agent stops its exploration and checks whether the black hole is the East
neighbor or the South neighbor.



– Whenever an agent reaches a node containing one token, it performs a
Cautious-Walk in East direction with two tokens and then continues the
Cautious-Walk in the same direction with one token. If the agent encounters
three times3 a node containing one token, it moves to the next horizontal
ring below. To do that it first performs a Cautious-Walk with two tokens
in the South direction. If the agent survives and reaches the ring below, it
can start exploring this horizontal ring. If the current node is not empty, the
agent repeats a cautious walk with two token in the East direction until it
reaches an empty node. Now the agent repeats the same exploration process
using the empty node as its new homebase. Whenever the agent encounter a
node with two tokens, it stops its exploration and checks whether the black
hole is the East or South neighbor.

In order to check if the black hole is the East neighbor v or the South neighbor w
of the current node u (containing two tokens), the agent performs the following
actions: The agent reaches the West neighbor x of w in exactly three time units
by going West and South (and waiting one step in between). If there are two
tokens on this node x then w is the black hole. Otherwise, the agent performs a
cautious walk in the East direction with one token (or with two tokens if there
is already one token on node x). If it safely reaches node w, then the black hole
is the other node v. Otherwise the agent would have fallen into the black hole
leaving a BHC at node w. An agent that discovers the black hole, traverses a
cycle around the black hole visiting all its neighbors and marking all the links
leading to it as dangerous.

Proposition 1. During an execution of BHS-torus-42 with k ≥ 4 agents, the
following properties hold:

A When an agent checks the number of tokens at a node, all surviving agents
have picked up their cautious-walk token.

B At most three agents can enter the black hole:
(a) at most one agent going South leaving two tokens at the previous node.
(b) at most two agents going East, each leaving one of its tokens at the pre-

vious node.
C When an agent checks the number of tokens at a node, if there are two tokens

then the black hole is either the East or the South neighbor of the current
node.

D After an agent starts exploring a horizontal ring, one of the following even-
tually occurs:
(a) If this ring is safe, the agent eventually moves to the next horizontal ring

below.
(b) Otherwise, either all agents on this ring fall into the black hole or one of

these agents marks all links to the black hole.

3 The agent may encounter homebases of two agents which have both fallen into the
black hole. (In this case it must continue in the same direction until it locates the
black hole)



Theorem 4. Algorithm BHS-torus-42 correctly solves the black hole search
problem with k ≥ 4 agents, each having two tokens.

Proof. Property B of Proposition 1 guarantees that at least one agent never
enters the black hole. Property D ensures that one of the surviving agents will
identify the black hole. Property C shows that if the links incident to a node w
are marked as dangerous by the algorithm, then node w is the black hole.

4.3 BHS with 3 agents and 2 movable tokens

Using the techniques presented so far, we now present the algorithm that uses
exactly 3 agents and two tokens per agent. The algorithm is quite involved and
we present here only the main ideas of the algorithm. The complete algorithm
along with a proof of correctness can be found in [2]. Notice first that we can
not prevent two of the three agents from falling into the black hole (see proof
of Lemma 1). To ensure that no more than two agents enter the black hole,
the algorithm should allow the agent to move only in two of the possible four
directions (when visiting unexplored nodes). When exploring the first horizontal
ring, an agent always moves in the East direction, using a Cautious-Walk as
before and keeping one token on the starting node (homebase). This is called
procedure First-Ring. Once an agent has completely explored one horizontal
ring, it explores the ring below, using procedure Next-Ring. During procedure
Next-Ring, an agent traverses the already explored ring and at each node u of
this ring, the agent puts one token, traverses one edge South (to check the node
just below node u), and then immediately returns to node u and picks up the
token. Note that an agent may fall into the black hole only when going South
during procedure Next-Ring or when going East during procedure First-Ring.
We ensure that at most one agent falls into the black hole from each of these
two directions. The surviving agent must then identify the black hole from the
tokens left by the other agents.

Algorithm 1: BHS-Torus-32

/* Algorithm for BHS in Oriented Torus (3 agents, 2 tokens) */

1 First-Ring;
2 repeat
3 Init-Next-Ring;
4 Next-Ring;

5 until until black hole is found ;

For this algorithm, we redefine the Black-Hole-Configuration (BHC) as fol-
lows: If there is a node v such that there is one or two tokens at both the West
neighbor of v and the North neighbor of v, then we say that a BHC exists at
v. The algorithm should avoid forming a black hole configuration at any other
node except the black hole. In particular, when the agents put tokens on their
homebase, these tokens should not form a BHC. This requires coordination be-
tween any two agents that are operating close to each other (e.g. in adjacent



rings of the torus) and it is not always possible to ensure that a BHC is never
formed at a safe node.

The main idea of the algorithm is to make two agents meet whenever they
are close to each other (this requires a complicated synchronization and check-
ing procedure). If any two agents manage to gather at a node, we can easily
solve BHS using the standard procedure for colocated agents4 with the time-out
mechanism (see [3, 5]) . On the other hand, if the agents are always far away
from each other (i.e. more than a constant distance) then they do not interfere
with the operations of each other until one of them falls into the black hole. The
agents explore each ring, other than the first ring, using procedure Next-Ring.
We have another procedure called Init-Next-Ring that is always executed at the
beginning of Next-Ring, where the agents check for certain special configura-
tions and take appropriate action. If the tokens on the potential homebases of
two agents would form a BHC on a safe node, then we ensure two agents meet.

Synchronization:
During the algorithm, we ensure that two agents meet if they start the procedure
Init-Next-Ring from nearby locations. We achieve this by keeping the agents
synchronized to each other, in the sense that they start executing the procedure
at the same time, in each iteration. More precisely, we ensure the following
property:

Property 1. When one agent starts procedure Init-Next-Ring, any other surviv-
ing agent either (i) starts procedure Init-Next-Ring at exactly the same time, or
(ii) waits in its current homebase along with both its tokens during the time the
other agent is executing the procedure or, (iii) has not placed any tokens at its
homebase.

Notice that if there are more than one agent initially located at distinct nodes
within the same horizontal ring, an agent cannot distinguish its homebase from
the homebase of another agent, and thus an agent would not know when to stop
traversing this ring and go down to the next one. We get around this problem
by making each agent traverse the ring a sufficient number of times to ensure
that every node in this ring is explored at least once by this agent. To be more
precise, each agent will traverse the ring until it has encountered a homebase
node six times (recall that there can be either one, two or three agents on the
same ring). This implies that in reality the agent may traverse the same ring
either twice, or thrice, or six times. If either all agents start in distinct rings or
if all start in the same ring then, the agents would always be synchronized with
each other (i.e. each agent would start the next iteration of Next-Ring at the
same time). The only problem occurs when two agents start on the same ring
and the third agent is on a different ring. In this case, the first two agents will
be twice as fast as the third agent. We introduce waiting periods appropriately
to ensure that Property 1 holds.

4 Note that the agents meeting at a node can be assigned distinct identifiers since they
would arrive from different directions.



For both the procedures First-Ring and Next-Ring, we define one big-step to
be the period between when an agent arrives at a node v from the West with
its token(s) and when it has left node v to the East with its token(s). During a
big-step, the agent would move to an unsafe node (East or South), come back
to pick its token, wait for some time at v before moving to the next node with
its token. The waiting period is adjusted so that an agent can execute the whole
procedure Init-Next-Ring during this time. Thus, the actual number of time
units for each big-step is a fixed constant D.

Algorithm BHS-Torus-32 :

Procedure First-Ring :
During this procedure the agent explores the horizontal ring that contains its
starting location. The agent puts one token on its homebase and uses the other
token to perform cautious-walk in the direction East, until it enters a node with
some tokens. If it finds a node with two tokens then the next node is the black
hole. Thus, the agent has solved BHS. Otherwise, if the agent finds a node with
a single token this is the homebase of some agent (maybe itself). The agent puts
the second token on this node and continues the walk without any token (i.e. it
imitates the cautious-walk). If it again encounters a node with a single token,
then the next node is the black hole and the algorithm terminates. Otherwise,
the agent keeps a counter initialized to one and increments the counter whenever
it encounters a node containing two tokens. When the counter reaches a value
of six, the procedure terminates. At this point the agent is on a node with two
tokens (which it can use for the next procedure).

Unless an agent enters or locates the black hole, the procedure First-Ring
requires exactly 6nD time units for an agent that is alone in the ring, 3nD for
two agents that start on the same ring, and 2nD if all the three agents start on
the same ring.

Procedure Init-Next-Ring :
An agent executes this procedure at the start of procedure Next-Ring in order
to choose its new homebase for exploring the next ring. The general idea is that
the agent checks the node u on the South of its current location, move its two
tokens to the East, and then goes back to u. If there is another agent that has
started Next-Ring on the West of u (i.e., without this Procedure, the homebases
of the two agents would have formed a BHC), the agents can detect it, and Init-
Next-Ring is designed in such a way that the two agents meet. More precisely,
when an agent executes Init-Next-Ring on horizontal ring i without falling into
the black hole, we ensure that either (i) it meets another agent, or (ii) it locates
the black hole, or (iii) it detects that the black hole is on ring i + 2, or (iv)
the token it leaves on its homebase does not form a BHC with a token on ring
i + 1. In case (iii), the agent executes Black-Hole-in-Next-Ring ; in case (iv), it
continues the execution of Next-Ring.



Procedure Next-Ring :
The agent keeps one token on the homebase and with the other token performs
a special cautious-walk during which it traverses the safe ring and at each node
it puts a token, goes South to check the node below, returns back and moves
the token to the East. The agent keeps a counter initialized to zero, which it
increments whenever it sees a node with a token on the safe ring. When the agent
sees a token on the safe ring, it does not go South, since this may be dangerous.
Instead, the agent goes West and South, and if it does not see any token there,
it puts a token and goes East. If the agent enters the black hole, it has left a
BHC. When the counter reaches a value of six, the procedure terminates.

During the procedure, an agent keeps track of how many (1 or 2) tokens it
sees in the safe ring and the ring below. This information is stored as a sequence
(of length at most 24). At the end of the procedure, using this sequence, an
agent in the horizontal ring i can detect whether (i) the Black hole lies in the
horizontal ring i+ 1 or i+ 2, or, (ii) there are two other agents in the ring i and
ring i+ 1 respectively, or, (iii) the ring i+ 1 does not contain the black hole. In
scenario (i), the agent executes procedure Black-Hole-in-Next-Ring ; in scenario
(ii), the agent meets with the other agent in the same ring; in scenario (iii),
the agent moves to the next horizontal ring (i.e. ring i + 1) to start procedure
Init-Next-Ring again.

Procedure Black-Hole-in-Next-Ring :
The agent executes this procedure only when it is certain that the black hole lies
in the ring below its current position. The procedure is similar to Next-Ring ; the
main difference being that the agent does not leave a homebase token. During the
procedure, either (i) the agent detects the location of the black hole and marks
all links to the black hole or (ii) the agent falls into the black hole, forming a
BHC at the black hole.

Theorem 5. Algorithm BHS-Torus-32 correctly solves the BHS problem in any
oriented torus with exactly three agents carrying two tokens each.

5 Conclusions

We showed that at least three agents are needed to solve BHS in oriented torus
networks and these three agents must carry at least two movable tokens each
for marking the nodes. The algorithm BHS-Torus-32 uses the smallest possible
team of agents (i.e., 3) carrying the minimum number of tokens (i.e., 2) and
thus, it is optimal in terms of resource requirements. However, on the downside
this algorithm works only for k = 3 agents. In combination with algorithm BHS-
Torus-42 (which solves the problem for any k ≥ 4 agents carrying 2 tokens each),
these algorithms can solve the black hole search problem for any k ≥ 3, if the
value of k is known. Unfortunately, algorithms BHS-Torus-32 and BHS-Torus-42
cannot be combined to give an algorithm for solving the BHS problem for any
k ≥ 3 agents without the knowledge of k: Algorithm BHS-Torus-32 for 3 agents



will not correctly locate the black hole if the agents are more than 3, while in
the algorithm BHS-Torus-42, 3 of the agents may fall into the black hole. Hence,
whether the problem can be solved for k ≥ 3 agents equipped with 2 tokens,
without any knowledge of k, remains an interesting (and we believe challenging)
open question. Another interesting open problem is to determine the minimum
size of a team of agents carrying one token each, that can solve the BHS problem.
Note that the impossibility result for three agents carrying one token each, does
not immediately generalize to the case of 4 or more agents, as in those cases, we
cannot exclude the possibility that two surviving agents manage to meet.

It is interesting to compare our results with the situation in a synchronous,
oriented, anonymous ring, which can be seen as a one dimensional torus ([3]):
The minimum trade-offs between the number of agents and the number of tokens,
in this case, are 4 agents with 2 unmovable tokens or 3 agents with 1 movable
token each. Additionally, in an unoriented ring the minimum trade-offs are 5
agents with 2 unmovable tokens or 3 agents with 1 movable token each whereas
the situation in an unoriented torus has not been studied. Hence another open
problem is solving the BHS problem in a d-dimensional torus, d > 3, as well as
in other network topologies.
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