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3 Département d’informatique, Université du Québec en Outaouais, Gatineau,
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Abstract. We consider the problem of gathering identical, memoryless,
mobile robots in one node of an anonymous unoriented ring. Robots start
from different nodes of the ring. They operate in Look-Compute-Move
cycles and have to end up in the same node. In one cycle, a robot takes
a snapshot of the current configuration (Look), makes a decision to stay
idle or to move to one of its adjacent nodes (Compute), and in the latter
case makes an instantaneous move to this neighbor (Move). Cycles are
performed asynchronously for each robot. For an odd number of robots
we prove that gathering is feasible if and only if the initial configura-
tion is not periodic, and we provide a gathering algorithm for any such
configuration. For an even number of robots we decide feasibility of gath-
ering except for one type of symmetric initial configurations, and provide
gathering algorithms for initial configurations proved to be gatherable.
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1 Introduction

Mobile entities (robots), initially situated at different locations, have to gather
at the same location (not determined in advance) and remain in it. This problem
of distributed self-organization of mobile entities is known in the literature as
the gathering problem. The main difficulty of gathering is that robots have to
break symmetry by agreeing on a common meeting location. This difficulty is
aggravated when (as in our scenario) robots cannot communicate directly but
have to make decisions about their moves only by observing the environment.

We study the gathering problem in a scenario which, while very simple to
describe, makes the symmetry breaking component particularly hard. Consider
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an unoriented anonymous ring of stations (nodes). Neither nodes nor links of the
ring have any labels. Initially, some nodes of the ring are occupied by robots and
there is at most one robot in each node. The goal is to gather all robots in one
node of the ring and stop. Robots operate in Look-Compute-Move cycles. In one
cycle, a robot takes a snapshot of the current configuration (Look), then, based
on the perceived configuration, makes a decision to stay idle or to move to one
of its adjacent nodes (Compute), and in the latter case makes an instantaneous
move to this neighbor (Move). Cycles are performed asynchronously for each
robot. This means that the time between Look, Compute, and Move operations
is finite but unbounded, and is decided by the adversary for each robot. The only
constraint is that moves are instantaneous, and hence any robot performing a
Look operation sees all other robots at nodes of the ring and not on edges,
while performing a move. However a robot R may perform a Look operation at
some time t, perceiving robots at some nodes, then Compute a target neighbor
at some time t′ > t, and Move to this neighbor at some later time t′′ > t′

in which some robots are in different nodes from those previously perceived
by R because in the meantime they performed their Move operations. Hence
robots may move based on significantly outdated perceptions, which adds to the
difficulty of achieving the goal of gathering. It should be stressed that robots are
memoryless (oblivious), i.e. they do not have any memory of past observations.
Thus the target node (which is either the current position of the robot or one
of its neighbors) is decided by the robot during a Compute operation solely
on the basis of the location of other robots perceived in the previous Look
operation. Robots are anonymous and execute the same deterministic algorithm.
They cannot leave any marks at visited nodes, nor send any messages to other
robots.

This very weak scenario, similar to that considered in [1, 3, 5, 6, 10, 13, 14], is
justified by the fact that robots may be very small, cheap and mass-produced
devices. Adding distinct labels, memory, or communication capabilities makes
production of such devices more difficult, and increases their size and price, which
is not desirable. Thus it is interesting to consider such a scenario from the point
of view of applications. On the theoretical side, this weak scenario increases the
difficulty of gathering by making the problem of symmetry breaking particularly
hard, and thus provides an interesting setting to study this latter issue in a
distributed environment.

It should be noted that the gathering problem under the scenario described
above is related to the well-known leader election problem (cf. e.g. [12]) but
is harder than it for the following reason. If robots in the initial configuration
cannot elect a leader among nodes (this happens for all periodic configurations
and for some symmetric configurations) then gathering is impossible (see Section
3). However, even if leader election is possible in the initial configuration, this
does not necessarily guarantee feasibility of gathering. Indeed, while the node
elected as a leader is a natural candidate for the place to gather, it is not clear
how to preserve the same target node during the gathering process, due to its
asynchrony. (Recall that nodes do not have labels, and configurations perceived



by robots during their Look operation change during the gathering process, thus
robots may not ”recognize” the previously elected node later on.)

An important and well studied capability in the literature on robot gathering
is the multiplicity detection [10, 14]. This is the ability of the robots to perceive,
during the Look operation, if there is one or more robots in a given location. In
our case, we prove that without this capability, gathering of more than one robot
is always impossible. Thus we assume the capability of multiplicity detection in
our further considerations. It should be stressed that, during a Look operation,
a robot can only tell if at some node there are no robots, there is one robot, or
there are more than one robots: a robot does not see a difference between a node
occupied by a or b robots, for distinct a, b > 1.

Related work. The problem of gathering mobile robots in one location has been
extensively studied in the literature. Many variations of this task have been con-
sidered. Robots move either in a graph, cf. e.g., [2, 7–9, 11], or in the plane [1, 3–6,
10, 13–15], they are labeled [7, 8, 11], or anonymous [1, 3–6, 10, 13–15], gathering
algorithms are probabilistic (cf. [2] and the literature cited there), or determin-
istic [1, 3–7, 9–11, 13–15]. Deterministic algorithms for gathering robots in a ring
(which is a task closest to our current setting) have been studied e.g., in [7–9, 11].
In [7, 8, 11] symmetry was broken by assuming that robots have distinct labels,
and in [9] it was broken by using tokens.

To the best of our knowledge, the very weak assumption of anonymous iden-
tical robots that cannot send any messages and communicate with the environ-
ment only by observing it, was used to study deterministic gathering only in the
case of robots moving freely in the plane [1, 3–6, 10, 13–15]. The scenario was
further precised in various ways. In [4] it was assumed that robots have memory,
while in [1, 3, 5, 6, 10, 13–15] robots were oblivious, i.e., it was assumed that they
do not have any memory of past observations. Oblivious robots operate in Look-
Compute-Move cycles, similar to those described in our scenario. The differences
are in the amount of synchrony assumed in the execution of the cycles. In [3,
15] cycles were executed synchronously in rounds by all active robots, and the
adversary could only decide which robots are active in a given cycle. In [4–6, 10,
13–15] they were executed asynchronously: the adversary could interleave oper-
ations arbitrarily, stop robots during the move, and schedule Look operations of
some robots while others were moving. It was proved in [10] that gathering is
possible in the asynchronous model if robots have the same orientation of the
plane, even with limited visibility. Without orientation, the gathering problem
was positively solved in [5], assuming that robots have the capability of multi-
plicity detection. A complementary negative result concerning the asynchronous
model was proved in [14]: without multiplicity detection, gathering robots that
do not have orientation is impossible.

Our scenario is the most similar to the asynchronous model used in [10,
14]. The only difference is in the execution of Move operations. This has been
adapted to the context of the ring of stations (nodes): moves of the robots
are executed instantaneously from a node to its neighbor, and hence robots
always see other robots at nodes. All possibilities of the adversary concerning



interleaving operations performed by various robots are the same as in the model
from [10, 14], and the characteristics of the robots (anonymity, obliviousness,
multiplicity detection) are also the same.
Our results. For an odd number of robots we prove that gathering is feasible if
and only if the initial configuration is not periodic, and we provide a gathering
algorithm for any such configuration. For an even number of robots we decide
feasibility of gathering except for one type of symmetric configurations, and
provide gathering algorithms for initial configurations proved to be gatherable.

Due to space limitations, most of the proofs have been omitted and will
appear in the full version of the paper.

2 Terminology and Preliminaries

We consider an n-node anonymous unoriented ring. Initially, some nodes of the
ring are occupied by robots and there is at most one robot in each node. The
number of robots is denoted by k. During the gathering process robots move,
and at any time they occupy some nodes of the ring, forming a configuration.
A configuration is denoted by a pair of sequences ((a1, . . . , ar), (b1, . . . , bs)),
where the integers ai and bj have the following meaning. Choose an arbitrary
node occupied by at least one robot as node u1 and consider consecutive nodes
u1, u2, u3, . . . , ur, occupied by at least one robot, starting from u1 in the clock-
wise direction. (Clockwise direction is introduced only for the purpose of defini-
tion, robots do not have this notion, as the ring is not oriented.) Integer ai, for
i < r, denotes the distance in the ring between nodes ui and ui+1, and integer ar

denotes the distance between nodes ur and u1 (in the clockwise direction). Next,
consider those nodes among u1, u2, u3, . . . , ur which are occupied by more than
one robot. Such nodes are called multiplicities. Suppose that uv1 , . . . , uvs

are
these consecutive nodes (ordered in clockwise direction). Integer bi is defined as
the distance in the clockwise direction between node u1 and node uvi

. It should
be clear that different choices of node 1 give rise to different pairs of sequences.
Respective sequences in these pairs are cyclic shifts of each other and correspond
to the same positioning of robots. So formally a configuration should be defined
as an equivalence class of a pair of sequences with respect to those shifts. To
simplify notation we will use pairs of sequences instead of those classes, and for
configurations without multiplicities we will drop the second sequence, simply
using sequence (a1, . . . , ar).

Consider a configuration C = (a1, . . . , ar) without multiplicities. The range
of the configuration C is the set {a1, . . . , ar}. For any integer ai in the range of
C, the weight of ai is the number of times this integer appears in the sequence
(a1, . . . , ar). C is called periodic if the sequence (a1, . . . , ar) is a concatenation
of at least two copies of a subsequence p. The configuration C can be also
represented as the set Z of nodes occupied by the robots. C is called symmetric
if there exists an axis of symmetry of the ring, such that the set Z is symmetric
with respect to this axis. If the number of robots is odd and S is an axis of
symmetry of the set Z then there is exactly one robot on the axis S. This robot



is called axial for this axis. Two robots are called neighboring, if at least one
of the two segments of the ring between them does not contain any robots. A
segment of the ring between two neighboring robots is called free if there is no
robot in this segment.

We now describe formally what a robot perceives during a Look opera-
tion. Fix a robot R in a configuration represented by a pair of sequences
((a1, . . . , ar), (b1, . . . , bs)), where this particular representation is taken with re-
spect to the node occupied by R (i.e., this node is considered as node u1). The
view of robot R is the set of two pairs of sequences {((a1, . . . , ar), (b1, . . . , bs)),
((ar, ar−1, . . . , a1), (n−bs, . . . , n−b1))} (if the node occupied by R is a multiplic-
ity then we define the view of R as {((a1, . . . , ar), (0, b2, . . . , bs)), ((ar, ar−1, . . . ,
a1), (0, n− bs, . . . , n− b2))}). This formalization captures the fact that the ring
is unoriented and hence the robot R cannot distinguish between a configuration
and its symmetric image, if R is itself on the axis of symmetry. This is con-
veyed by defining the view as the set of the two couple of sequences because
the sets {((a1, . . . , ar), (b1, . . . , bs)), ((ar, ar−1, . . . , a1), (n− bs, . . . , n− b1))} and
{((ar, ar−1, . . . , a1), (n−bs, . . . , n−b1)), ((a1, . . . , ar), (b1, . . . , bs))} are equal. As
before, if there are no multiplicities, we will drop the second sequence in each case
and write the view as the set of two sequences: {(a1, . . . , ar), (ar, ar−1, . . . , a1)}.
For example, in a 9-node ring with consecutive nodes 1, . . . , 9 and three robots
occupying nodes 1,2,4, the view of robot R at node 1 is the set {(1, 2, 6), (6, 2, 1)}.

A configuration without multiplicities is called rigid if the views of all robots
are distinct. We will use the following geometric facts.

Lemma 1. 1. A configuration without multiplicities is non-rigid, if and only
if it is either periodic or symmetric.

2. If a configuration without multiplicities is non-rigid and non-periodic then it
has exactly one axis of symmetry.

Consider a configuration without multiplicities that is non-rigid and non-periodic.
Then it is symmetric. Let S be its unique axis of symmetry. If the number of
robots is odd then exactly one robot is situated on S and S goes through the
antipodal node if the size n of the ring is even, and through the (middle of the)
antipodal edge if n is odd. If the number of robots is even then two cases are
possible:

– edge-edge symmetry : S goes through (the middles of) two antipodal edges;
– node-on-axis symmetry : at least one node is on the axis of symmetry.

Note that the first case can occur only for an even number of robots in a ring of
even size.

We now establish two basic impossibility results. Note that similar results
have been proven for gathering robots on the plane. However, these results do
not directly imply ours.

Proposition 1. 1. Gathering any 2 robots is impossible on any ring.
2. If multiplicity detection is not available then gathering any k > 1 robots is

impossible on any ring.



Proposition 1 justifies the two assumptions made throughout this paper: the
number k of robots is at least 3 and robots are capable of multiplicity detection.

All our algorithms describe the Compute part of the cycle of robots’ activities.
They are written from the point of view of a robot R that got a view in a Look
operation and computes its next move on the basis of this view.

The rest of the paper is organized as follows. In Section 3 we first establish two
impossibility results: gathering is not feasible for periodic and edge-edge sym-
metric configurations. We then describe a procedure to gather configurations
containing exactly one multiplicity and finally we propose a gathering procedure
for rigid configurations. In Section 4 we give the complete solution of the gath-
ering problem for any odd number of robots. Section 5 concludes the paper with
a discussion of gathering for an even number of robots and with open problems.

3 Gatherable Configurations

In this section we first show two impossibility results. The first one concerns
any number of robots, while the second one concerns only the case of an even
number of robots on a ring of even size.

Theorem 1. Gathering is impossible for any periodic configuration.

Theorem 2. Gathering is impossible for any edge-edge symmetric configura-
tion.

We now show a gathering procedure for any configuration containing exactly
one multiplicity, say at node v.

Procedure Single-Multiplicity-Gathering

if R is at the multiplicity then do not move
else

if none of the segments between R and the multiplicity is free
then do not move
else move towards the multiplicity along the shortest of the free

segments or along any of them in the case of equality.

The idea is to gather all robots at v, avoiding creating another multiplicity (which
could potentially create a symmetry, making the gathering process harder or even
impossible). Procedure Single-Multiplicity-Gathering achieves this goal by first
moving the robots closest to v towards v, then moving there the second closest
robots, and so on.

Lemma 2. Procedure Single-Multiplicity-Gathering performs gathering of robots
for any configuration with a single multiplicity.

Now we describe a gathering procedure for any rigid configuration, regardless of
the number of robots.



The main idea of the procedure is to elect a single robot and move it until it
hits one of its neighboring robots, thus creating a single multiplicity, and then to
apply Procedure Single-Multiplicity-Gathering. The elected robot must be such
that during its walk the rigidity property is not lost. In order to achieve this goal,
we perform the election as follows. First the robots elect a pair of neighboring
robots at maximum distance (there may be several such pairs, whence the need
for election). Then they choose among them the robot which has the other
neighboring robot closer. Ties can be broken easily.

In order to elect a robot we need to linearly order all possible views. This
can be done in many ways. One of them is to order lexicographically all finite
sequences of integers and number them by consecutive natural numbers. Then
a view becomes a set of two natural numbers. Treat these sets as ordered pairs
of natural numbers in increasing order, order these pairs lexicographically, and
assign them consecutive natural numbers in increasing order. We fix the resulting
linear order of views and this numbering beforehand, adding it to the algorithm
for all robots. We call this procedure Rigid-Gathering.

Lemma 3. Procedure Rigid-Gathering performs gathering of robots for any rigid
configuration without multiplicities.

4 Gathering an Odd Number of Robots

In this section we present a gathering algorithm for any non-periodic configu-
ration of an odd number of robots. Together with Theorem 1 this solves the
gathering problem for an odd number of robots.

Algorithm Odd-Gathering

if the configuration is periodic then output: gathering impossible
else

if the configuration has a single multiplicity
then Single-Multiplicity-Gathering
else

if the configuration is rigid then Rigid-Gathering
else

if R is axial then move (to any of the adjacent nodes)

The idea of the algorithm is the following. Consider any non-periodic configu-
ration of an odd number of robots (recall that initially there are no multiplic-
ities). If it is rigid then apply Procedure Rigid-Gathering. Otherwise it must
be symmetric, by Lemma 1. There is a unique axial robot for its unique axis
of symmetry. Move this robot to any adjacent node. We prove that three cases
can occur. (1) The resulting situation has a multiplicity (the adjacent node was
occupied by a robot): then apply Procedure Single-Multiplicity-Gathering. (2)
The resulting configuration is rigid: then apply Procedure Rigid-Gathering. (3)
Another axis of symmetry has been created (the previous one has been obvi-
ously destroyed by the move). In this case there is a unique axial robot for the



unique axis of symmetry. Move this robot to any adjacent node. Again one of the
three above cases can occur. We prove that after a finite number of such moves,
only cases (1) or (2) can occur, and thus gathering is finally accomplished either
by applying Procedure Single-Multiplicity-Gathering or by applying Procedure
Rigid-Gathering. In the proof of the correctness of Algorithm Odd-Gathering we
will use the following lemmas.

Lemma 4. Let C be a symmetric configuration of an odd number of robots,
without multiplicities. Let C ′ be the configuration resulting from C by moving
the axial node to any of the adjacent nodes. Assume that C ′ does not have mul-
tiplicities. Then C ′ is not periodic.

Let C be a symmetric non-periodic configuration of an odd number of robots,
without multiplicities. The unique value of odd weight in the configuration C is
called the chief of C. Let C ′ be the configuration resulting from C by moving
the axial robot to any of the adjacent nodes. If C ′ does not have multiplicities
and is symmetric then we will call it special. The subset of the range of a special
configuration C ′ consisting of integers of the same parity as that of the chief is
called the white part of the range, and its complement is called the black part of
the range. We denote by b(C ′) the total number of occurrences in C ′ of integers
from the black part of its range.

Lemma 5. Consider a sequence (C1, C2, . . .) of special configurations, such that
Ci+1 results from Ci by moving the axial robot to any of the adjacent nodes. Then
for some i ≤ k, we have b(Ci) = 0.

Lemma 6. Consider a special configuration C, with b(C) = 0. Let C ′ be the
configuration resulting from C by moving the axial robot to any of the adjacent
nodes. If C ′ does not have multiplicities then it is not symmetric.

We are now ready to prove the correctness of Algorithm Odd-Gathering.

Theorem 3. Algorithm Odd-Gathering performs gathering of any non-periodic
configuration of an odd number of robots.

Proof. Consider an initial non-periodic configuration C of an odd number of
robots. By assumption it does not contain multiplicities. If it is rigid then we are
done by Lemma 3. Otherwise, it must be symmetric by Lemma 1. Let A be its
unique axial robot. Let C1 be the configuration resulting from C by moving robot
A to any of the adjacent nodes. If C1 contains a multiplicity then we are done by
Lemma 2. If C1 is rigid then we are done by Lemma 3. Otherwise, C1 is either
periodic or symmetric, in view of Lemma 1. By Lemma 4, it cannot be periodic,
hence it must be symmetric, and thus special. Consider the configuration C2

resulting by moving the axial robot of C1 to any of the adjacent nodes. Again
C2 either contains a multiplicity, or is rigid, or is special. In the first two cases
we are done, and in the third case the axial robot is moved again. In this way
we create a sequence C1, C2, . . . of special configurations. By Lemma 5, there is
a configuration Ci in this sequence, with b(Ci) = 0. Let C ′ be the configuration



resulting from Ci by moving the axial robot to any of the adjacent nodes. By
Lemma 6, the configuration C ′ either has a multiplicity, or cannot be symmetric,
and thus must be rigid. In the first case we are done by Lemma 2 and in the
second case by Lemma 3. �

Theorem 3 and Theorem 1 imply the following corollary.

Corollary 1. For an odd number of robots, gathering is feasible if and only if
the initial configuration is not periodic.

5 Conclusion

We completely solved the gathering problem for any odd number of robots, by
characterizing configurations possible to gather (these are exactly non-periodic
configurations) and providing a gathering algorithm for all these configurations.
Corollary 1 is equivalent to the following statement: for an odd number of robots,
gathering is feasible if and only if in the initial configuration, robots can elect a
node occupied by a robot.

For an even number of robots, we proved that gathering is impossible if either
the number of robots is 2, or the configuration is periodic, or when it has an edge-
edge symmetry. On the other hand, we provided a gathering algorithm for all
rigid configurations. This leaves unsettled one type of configurations: symmetric
non-periodic configurations of an even number of robots with a node-on-axis type
of symmetry. These are symmetric non-periodic configurations in which at least
one node is situated on the unique axis of symmetry. This (these) node(s) may
or may not be occuppied by robots. In this case, the symmetry can be broken by
initially electing one of the axial nodes. This node is a natural candidate for the
place to gather. However, it is not clear how to preserve the same target node
during the gathering process, due to its asynchrony. Unlike in our gathering
algorithm for an odd number of robots, where only one robot moves until a
multiplicity is created, in the case of the above symmetric configuration of an
even number of robots, some robots would have to move together. This creates
many possible outcomes of Look operations for other robots, in view of various
possible behaviors of the adversary, which can interleave their actions. We note
here that for an even number of robots there are cases where gathering is feasible
even when robots cannot initially elect a node occupied by a robot (they will be
included in the full version of the paper).

The complete solution of the gathering problem for an even number of robots
remains a challenging open question left by our research. We conjecture that in
the unique case left open (non-periodic configurations of an even number of
robots with a node-on-axis symmetry), gathering is always feasible. In view of
our results, this is equivalent to the following statement.

Conjecture: For an even number of more than 2 robots, gathering is feasible
if and only if the initial configuration is not periodic and does not have an edge-
edge symmetry.



The validity of this conjecture would imply that, for any number of more
than 2 robots, gathering is feasible if and only if, in the initial configuration
robots can elect a node (not necessarily occupied by a robot).
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