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Abstract

In the Art Gallery problem a polygon is given and
the goal is to place as few guards as possible so that
the entire area of the polygon is covered. We ad-
dress a closely related problem: how to place a fixed
number of guards on the vertices or the edges of a
simple polygon so that the total guarded area inside
the polygon is maximized. We prove that the prob-
lem and some variations are APX-hard and we present
polynomial time algorithms that achieve constant ap-
proximation ratios. Finally we extend our results for
the case where the guards are required to cover val-
ued items inside the polygon. The valued items or
“treasures” are modeled as simple closed polygons.

1 Introduction

In the Art Gallery problem a polygon is given and the
goal is to place as few guards as possible so that the
entire area of the polygon is covered. Many variations
of the Art Gallery problem have been studied during
the last two decades ([11], [12], [13]). These can be
classified with respect to where the guards are allowed
to be placed (e.g. on vertices, edges, interior of the
polygon) or whether only the boundary or all of the
interior of the polygon needs to be guarded, etc. Most
known variations are NP–hard.

We address a closely related problem:

Definition 1 Given is a simple polygon P and an in-
teger k > 0. The goal of the Maximum Area Ver-
tex Guards problem is to place k vertex guards so
that the area of P ’s interior that is overseen by the
guards is maximum.

The Minimum Vertex Guards problem asks
how to guard a polygon, with or without holes, us-
ing a minimum number of guards placed on ver-
tices; extensions consider edges or points in the in-
terior. These problems are APX–hard and O(log n)–
approximable [8, 3, 4]. A related problem about
terrain guarding, is the Minimum Fixed Height
Vertex (Point) Guards On Terrain problem
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(Θ(log n)–approximable [6], [3], [4]). In [7] the case
of guarding the walls (and not necessarily every inte-
rior point) is studied. In [2] the following problem has
been introduced: suppose we have a number of valu-
able treasures in a polygon P ; what is the minimum
number of mobile (edge) guards required to patrol P
in such a way that each treasure is always visible from
at least one guard? In [2] they show NP–hardness and
give heuristics for this problem. In [1] weights are as-
signed to the treasures in the gallery. They study the
case of placing one guard in the gallery in such a way
that the sum of weights of the visible treasures is max-
imized. Recent (non- )approximability results for art
gallery problems can be found in [8, 11, 12, 13, 4, 6].

2 Finest Visibility Subdivision

We recall from [5] and [9] some preliminary defini-
tions: Let P be a simple polygon, a, b ∈ P two points
inside P and L,M ⊆ P two sets of points inside P .
We say that point a sees point b, i.e. a and b are mu-
tually visible, if the segment connecting a and b lies
inside the closed polygon P . We say that the point
set L is visible from the point set M or that M over-
sees L if for every point a which belongs to L, there
exists a point b that belongs to M , such that a sees b.
Notice that if M oversees L, it is not necessary for L
to oversee M . Finally, M watches L if there exists a
point a that belongs to L and a point b that belongs
to M such that a sees b. Notice that if M watches L
then also L watches M .

Our method descritizes the interior of any simple
polygon with respect to visibility. In [5] we defined
the notion of the Finest Visibility Segmentation of
the boundary of a polygon P : Consider the visibil-
ity graph VG(P ) with vertex set V (P ), i.e. the vertex
set of P , where two vertices share an edge iff they are
visible in P . By extending the edges of VG(P ) inside
P up to the boundary of P we obtain a set of points
FVS of the boundary of P , that includes of course all
vertices of P . An extended edge of VG(P ) generates
at most two FVS points. Since there are O(n2) edges
in VG(P ), there are O(n2) points in any polygon’s
FVS set. We call this construction the Finest Visibil-
ity Segmentation of the boundary of the polygon P .
Any open segment (a, b), (i.e. a and b are excluded),
defined by consecutive FVS points, is called an FVS
segment of P .

Here we extend the FVS construction considering
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also all the intersection points of all the extended vis-
ibility graph’s edges inside the polygon P . There are
O(n4) regions created inside P which are called FVS
regions of P . Due to the above construction, such an
FVS region has the following property: none of the
extended visibility edges can cross the region. We call
this construction the Finest Visibility Subdivision of
the interior of the polygon P .

The following two lemmas establish that a FVS re-
gion cannot be only partly visible from a vertex or
an edge.

Lemma 1 For any vertex v of a simple polygon P , a
FVS region is visible by v if and only if it is watched
by v.

Proof. Of course if a FVS region is visible by v, then
it is watched by v. Suppose now that the region is
watched by v but not overseen by v. In that case there
must be another vertex v′ which blocks the visibility
of v. But then vv′ is a visibility edge and the extension
of vv′ crosses the FVS region which cannot hold since
it contradicts the definition of a FVS region. ¤

Lemma 2 For any edge e of a simple polygon P , a
FVS region is visible by e if and only if it is watched
by e.

Proof. (Sketch) Of course if a FVS region is visible
by e, then it is watched by e. Suppose now that the
region is watched by e = (vi, vj) but not overseen
by e. This means that there is a point p inside the
FVS region which sees a point d ∈ e. Sweeping the
line that passes through p and d around d we meet a
vertex vm of P before the sweep lines stops crossing
the FVS region (since the region is not overseen). We
start now sweeping the line that passes through d and
vm around vm until the line stops crossing the FVS
region. Notice that if another vertex vn (or v′n) is hit
by the sweep line then there must be a visibility edge
(e.g. vmvn) whose extension crosses the FVS region.
But the latter cannot hold since by definition an FVS
region is not crossed by any visibility edges. ¤

The above lemmas demonstrate the following: The
interior of any simple polygon P can be effectively
descritized in terms of visibility to O(n4) FVS regions.
Any vertex (edge) of P oversees a FVS region if and
only if it watches the FVS region.

In order to find the set of all overseen FVS regions
from a polygon vertex v, namely the FVS (v) set, (us-
ing lemma 1) it suffices to select a point p inside every
FVS region and connect it to vertex v. If this segment
is everywhere inside the polygon P , then the region
containing p is overseen from v.

For the case of the FVS (e) set, that is the set of
all overseen FVS segments from a polygon edge e,
(using lemma 2) it suffices to select a point p inside

every FVS region and then sweeping a line around p.
The FVS region containing p is overseen by an edge
touched by that line.

3 The Maximum Area Vertex (Edge) Guards
problem

Let A(r) be the area of the region r.

Algorithm 1 Maximum Area Vertex Guards
compute the FVS regions
for all v ∈ V (P ) do

compute FVS (v)
end for
SOL← ∅
for i = 1 to k do

select v ∈ V that maximizes A(SOL ∪ FVS (v))
SOL← SOL ∪ FVS (v)

end for
return A(SOL)

Consider P and integers k, A > 0. It is NP–hard
to decide whether we can place at most k guards on
vertices of P so that the total area overseen by the
guards is at least A. To see why, consider the deci-
sion Minimum Vertex Guards problem, which asks
whether the interior is overseen by at most k guards.
The reduction to Maximum Area Vertex Guards
is straightforward.

In [10] they prove that to maximize the guarded
boundary of a polygon with or without holes using
guards placed on vertices or edges, is APX–hard. If
we change the construction part of the reduction so
that to make sure that the area touched by the (so
called) “cheap edges” is small enough then the fol-
lowing theorem holds:

Theorem 3 The Maximum Area Vertex (Edge)
Guards problem is APX–hard.

Algorithm 1 is an approximation algorithm for the
Maximum Area Vertex Guards problem. It
starts by calculating the FVS regions and then for
every v ∈ V (P ) the set FVS (v). During each iter-
ation of the algorithm, for any vertex v that hasn’t
been assigned a guard yet, the set SOL ∪ FVS (v) (of
the overseen regions) is found and its area is calcu-
lated. The vertex that maximizes the total area of
the (not previously) overseen regions is then chosen,
causing a maximum possible increase of the solution.
Then the algorithm updates the set SOL by adding
the new FVS regions.

In order to prove that algorithm 1 approximates
Maximum Area Vertex Guards by a constant ap-
proximation factor, we work as follows:

Let OPT denote the collection of the set of regions
in an optimal solution and SOL denote the collection

2



returned by the algorithm. These collections have
A(OPT ) and A(SOL) values respectively. Suppose
that the algorithm places a guard at vertex vi at it-
eration i, and a set of new regions Pi. Therefore the
added total value of regions at iteration i is A(Pi).

Consider the ordered sequence of vertices (as they
have been selected by the algorithm) and let vl be
the first vertex in the sequence where a guard has
been placed by the algorithm but not in the optimal
solution. It holds:

A(Pi) = A(∪i
m=1Pm)−A(∪i−1

m=1Pm)

Lemma 4 After l iterations of algorithm 1, we have,
for l = 1, 2, . . . , k,

A(∪l
i=1Pi)−A(∪l−1

i=1Pi) ≥ A(OPT )−A(∪l−1
i=1Pi)

k
.

Proof. Consider vertices where guards have been
placed in the optimal solution but no guard has been
placed there by the algorithm. By the pigeonhole
principle, there is at least one such vertex vm so that
the following holds:

A(P ′m) ≥ A(OPT )−A(∪l−1
i=1P

′
i )

k

We have:

A(P ′m) ≥ A(OPT )−A(∪l−1
i=1Pi)

k

Notice that

A(Pl) ≥ A(Pm) ≥ A(P ′m)

and
A(∪l

i=1Pi)−A(∪l−1
i=1Pi) = A(Pl)

Therefore:

A(∪l
i=1Pi)−A(∪l−1

i=1Pi) ≥ A(OPT )−A(∪l−1
i=1Pi)

k

¤

Lemma 5 After l iterations of algorithm 1 it holds:

A(∪l
i=1Pi) ≥ (1− (1− 1

k
)l)A(OPT ), l = 1, ..., k

Proof. We are going to prove this by induction on
l. During the first step of the algorithm the set with
value A(P1) is chosen. It holds:

A(P1) ≥ A(P ′1)

A(P ′1) is the maximum possible value that OPT
achieves, so from the pigeonhole principle:

A(P ′1) ≥
A(OPT )

k
→ A(P1) ≥ A(OPT )

k

Suppose that the relation holds for i = l − 1:

A(∪l−1
i=1Pi) ≥ (1− (1− 1

k
)l−1)A(OPT )

Since:

A(∪l
i=1Pi) = A(∪l−1

i=1Pi) + (A(∪l
i=1Pi)−A(∪l−1

i=1Pi))

using lemma 4 we have:

A(∪l
i=1Pi) ≥ A(∪l−1

i=1Pi) +
A(OPT )−A(∪l−1

i=1Pi)
k

→

A(∪l
i=1Pi) ≥ A(∪l−1

i=1Pi)(1− 1
k

) +
A(OPT )

k

From the inductive hypothesis:

A(∪l
i=1Pi) ≥ (1−(1−1

k
)l−1)A(OPT )(1−1

k
)+

A(OPT )
k

→ A(∪l
i=1Pi) ≥ (1− (1− 1

k
)l)A(OPT )

¤

Theorem 6 Algorithm 1 runs in polynomial time
and achieves an approximation ratio of 1

1− 1
e

u 1.58
for the Maximum Area Vertex Guards problem.

Proof. Using lemma 5, we set l = k and get:

A(∪k
i=1Pi) ≥ (1− (1− 1

k
)k)A(OPT )

It holds:

lim
k→∞

(1− (1− 1
k

)k) = 1− 1
e

As (1− (1− 1
k )k) continuously gets smaller, we have:

1− (1− 1
k

)k ≥ 1− 1
e

So:
A(SOL) > (1− 1

e
)W (OPT )

That is the algorithm approximates the Maximum
Area Vertex Guards problem with a 1

1− 1
e

→ 1.58
ratio. ¤

The algorithm’s complexity is O(n4) because this
is the size of FVS . A different approach, based on a
triangulation and avoiding the FVS , yields O(n2k2)
for the same algorithm.

Similarly as before the Maximum Area Edge
Guards problem is APX–hard. A similar algorithm
to algorithm 1 approximates the Maximum Area
Edge Guards problem. The only difference from
algorithm 1 is that we need to calculate the FVS (e)
set using the technique described in section 2.
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4 The Maximum Treasures Value Vertex
(Edge) Guards problem

Consider the following problem: There exists a poly-
gon which encloses a number of closed simple subpoly-
gons each of which has a value assigned. The Maxi-
mum Treasures Value Vertex (Edge) Guards
problem’s goal is to place vertex or edge guards in a
way which maximizes the total value of the overseen
or watched subpolygons.

Proposition 7 Given is a polygon P which encloses
a number of closed simple subpolygons each of which
has a value assigned. Given also are two integers
k,M > 0. It is NP–hard to decide whether we can
place at most k vertex or edge guards so that the to-
tal value of the overseen or watched subpolygons is at
least M .

Proof. (Sketch) The decision version of Minimum
Vertex Guards problem for a polygon P reduces to
the corresponding decision version of the Maximum
Treasures Value Vertex (Edge) Guards prob-
lem for the same polygon: If M is the total number
of the polygon’s FVS regions then by assigning value
1 to each region the reduction is staightforward: The
polygon’s interior is overseen by at most k guards if
and only if the total value of the overseen FVS regions
is at least M . ¤

Theorem 8 Maximum Treasures Value Ver-
tex (Edge) Guards is APX–hard.

Proof. (Sketch) We can change the construction
part of the reduction presented in [10] by adding small
enough subpolygons touching the “cheap edges”. We
assign a suitable small value to each subpolygon. ¤

Algorithm 1, with the appropriate modifications,
approximates also the Maximum Treasures Value
Vertex (Edge) Guards problem with the same
ratio as in theorem 6. In fact, the computation of
the FVS regions is not required for the case of ver-
tex watching guards, since we can easily compute the
watched subpolygons from any vertex. However, for
the case of edge guards, a subpolygon pi is watched by
an edge e if and only if there is a FVS region watched
by e that touches pi. The total value of subpolygons
in A(SOL ∪ FV S(v)) is also required.

Notice that all the algorithms can be applied even
when the polygons have holes.

5 Open problems

Interesting problems are the following: (a) How to
place guards and given subpolygons in the polygon
so that a maximum value is guarded (i.e. this time
we need to place also the subpolygons). (b) How to

place guards in the interior of P for all the above
variations.
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