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Abstract. We consider the problem of finding a short path between
any two nodes of a network when no global information is available,
nor any oracle to help in routing. A mobile agent, situated in a starting
node, has to walk to a target node traversing a path of minimum length.
All information about adjacencies is distributed to certain nodes called
landmarks. We wish to minimize the total memory requirements as well
as keep the memory requirements per landmark to reasonable levels.
We propose a landmark selection and information distribution scheme
with overall memory requirement linear in the number of nodes, and
constant memory consumption per non-landmark node. We prove that a
navigation algorithm using this scheme attains a constant stretch factor
overhead in tree topologies, compared to an optimal landmark-based
routing algorithm that obeys certain restrictions. The flexibility of our
approach allows for various trade-offs, such as between the number of
landmarks and the size of the region assigned to each landmark.

1 Introduction

Our motivation is to model navigation in unknown or time-dependent environ-
ments, and to face questions of robustness in network routing by avoiding to
store global information in a single node, or in some external oracle. Our work
should find application in distributed computation and in sensor networks.

Efficient routing in a network has been studied extensively under several
scenarios with respect to the kind and amount of available topology information.
Several models have been proposed in order to design efficient routing schemes
with relatively low memory requirements; cf. [15].

Hierarchical routing has been proposed in [20] where the problem of efficiency-
memory tradeoffs for routing schemes was first raised. The authors proposed the
general approach of hierarchically clustering a network into k levels and using



the resulting structure for routing. The total memory used is O(n1+1/k log n)
while bounds were derived on the increase of average path length due to the
reduction of routing information. However, in order to apply the method of [20],
one needs to make some fairly strong assumptions regarding the existence of
a certain partition of the network. Several variations and improvements were
studied later [21, 25]. In [28], a landmark hierarchy has been proposed where the
nodes inside the radius of some landmarks have routing information of how to
send a message there. The authors give some results comparing average cases for
space requirements and stretch factors. A hierarchy within a geometric setting
has been proposed in [7]. In [18], the problem of minimizing the number of land-
marks was studied so that the distances to the landmarks uniquely determine a
mobile agent’s position.

Another approach stores limited information about the network in every
node. Explicit and implicit algorithms have been proposed [26, 10–12]. In the
former kind, names and labels are arbitrary and some detailed routing infor-
mation for all destinations is maintained per node. In implicit solutions [13, 27],
names and labels are assigned according to a scheme so that the information
implicit in the labelling can be used to choose the neighbor to which a message
should be sent. Results about name-independent routing schemes are found in
[4, 23, 3].

Lower bounds for the space-efficiency tradeoff of routing schemes were studied
in [24, 8, 9, 16, 6, 22, 14]. In particular, in [24], it has been shown that no routing
strategy can guarantee for every graph a routing scheme with a stretch factor
O(k) and o(n1+1/k) bits of total memory. Other lower and upper bound results
for space-stretch tradeoff can be found in [1, 2].

A related problem is the k-center problem, where one has to select k centers
and to partition the nodes among them so that no more than L nodes be as-
signed per center, and the distance between a node and its center be minimized.
There exist constant-ratio approximation algorithms for this problem, e.g. in the
works cited below. Although this literature is very rich, we do not apply their
algorithms in a black-box manner and, instead, we propose our own distribution
scheme. The reason is that such algorithms either do not put a limit to the region
size [17], or, whenever they do, as in the capacitated k−center problem [5, 19],
they do not require that every region be connected; thus, a path from a node
to its center can cross into another region. However, these two requirements are
essential in reducing memory load. Our scheme on trees guarantees both. An-
other reason for preferring the term “landmark” to “center” is that the former
suggests that landmarks are visible within their region and beyond. With tree
networks this is true because there is a natural direction (namely, upwards) so
as to reach a landmark.

Formally, given parameter L, we define certain nodes as landmarks and par-
tition the nodes to corresponding regions so that no more than L nodes are
assigned per landmark. A mobile agent MA with limited storage and comput-
ing capabilities, follows a simple algorithm using information stored at nodes it



traverses in order to reach quickly a target node. One faces three simultaneous
(and contradictory) tasks while distributing information about the graph:

– only a limited number of landmarks should contain information, while every
other node may know only its label,

– the total memory needed should be minimized,
– the stretch factor (travelled / optimal distance) of the routing scheme should

be minimized.

In this paper we propose Tree-Landmarks Routing (TLR), which is a dis-
tributed routing scheme appropriate for tree networks the nodes of which have
labels assigned in a DFS manner. We store additional information (apart from
node labels) only to a certain number of nodes. We also assume that every node
knows the port leading to its parent. We prove the efficiency of our approach,
namely that it stores a linear total amount of information to landmarks. We also
show that TLR yields a constant overhead on the stretch factor, compared to
that of an optimal landmark-based routing scheme that obeys the same upper
and lower bounds on the size of regions. Our algorithm is flexible thus allowing
for various trade-offs: most importantly between the number of landmarks and
the region size. In particular we prove that, given an upper bound L on the

region size and a parameter, TLR partitions a given tree network to O(
√

δ
α

n√
L

)
regions of size at most αL, where δ is the fan-out of the tree, for any α ≥ 1. We
expect that our approach generalizes to arbitrary graphs; we offer indications of
this generalization.

The rest of the paper is organized as follows. The next section formalizes the
problem and introduces all necessary notions. Section 3 focuses on tree networks,
describes our routing scheme and proves its properties. Section 4 shows that our
scheme achieves a low stretch factor and constant stretch overhead compared to
routing schemes that follow similar assumptions; a second overhead measuring
model is also examined. We conclude in Section 5 by suggesting possible exten-
sions of our approach to arbitrary graphs; we also state some open questions.

2 Model and Preliminaries

Let us describe the general framework before concentrating on trees. A mobile
agent MA, situated in a starting node s of a graph G = (V,E), has to walk
to a target node t of G traversing a minimum number of edges (or a walk of a
minimum weight). The goal is to distribute information about the graph topology
to a small subset of nodes so that MA can find quickly its way towards any target
node.

More specifically, in a precomputation phase, among the n nodes of G, k of
them are selected as landmarks and every node v of the graph is associated with
exactly one landmark m = lm(v) so that the following property is respected:
The selection of landmarks is such that no landmark has more than L associ-
ated nodes. After the selection of landmarks and the association of nodes to
landmarks, we distribute the information about the graph as follows.



First, in every node v of G, the next node in the path 〈v → lm(v)〉 is stored
(for the case of trees, only the port label leading to the parent of a node is
necessary). Notice that the nodes have to be assigned to landmarks in such a
way that, going from the node to its landmark only nodes assigned to the same
landmark are encountered. Otherwise the above limited information could lead
to unwanted delays, or even worse, could make MA enter a loop, thus preventing
her from reaching the landmark.

Second, in every landmark m, there is a table containing information about
the path 〈m → u〉, for every node u such that m = lm(u). These nodes constitute
the region of landmark m, denoted as region(m). In addition, a landmark may
contain information about paths leading to some other landmarks together with
indication about which nodes belong to the regions of those landmarks.

We say that two landmarks m1,m2 are adjacent or neighbors if there are
adjacent nodes u, v so that: m1 = lm(u), m2 = lm(v).

We will mainly deal with rooted trees, so let us introduce some appropriate
notation. For two nodes u, v in a rooted tree T , their least common ancestor
lca(u, v) is defined in the usual way, as the common ancestor of u and v that
has the greatest depth in T . We define the least common landmark of u and v,
denoted by lclm(u, v), as the common ancestor of u and v that is a landmark and
that has the greatest depth in T . It can be shown that lclm(u, v) = lm(lca(u, v)).

The agent initially knows only s, t. A routing from s to t could be the
following: MA follows a walk from s to lm(s), then from lm(s) to lm(t) and,
finally, from lm(t) to t. In the first phase MA reaches lm(s) using only ports
leading from nodes to their parents. In the second phase it reaches lm(t) using
only information stored in landmarks. In the third phase it only uses information
stored in lm(t) to find t. For the second-phase routing it makes sense to define
a hierarchy of landmarks, or use of an implicit hierarchy, as in trees.

We assume that the labels have been assigned to nodes in a DFS manner
and that each node knows its label and the port leading to its parent. We also
assume that MA has limited memory and computing capabilities.

We would like to have a simple and efficient routing scheme, at the same time
respecting bounds on the allowed memory load of landmarks and simple nodes.
We measure the efficiency of our method by means of the stretch factor and the
stretch overhead. Below we define these notions formally.

Let wA(s, t) be the walk from s to t followed by a routing scheme A and
let p(s, t) be the shortest path from s to t. The stretch factor SFA,G of routing
scheme A on graph G is the maximum ratio between |wA(s, t)| (the length of
wA(s, t)) and |p(s, t)| taken over all pairs (s, t) of nodes of G.

We also use another natural measure of performance which we call stretch
overhead of routing scheme A on graph G and denote it as HA,G: It is the
maximum ratio between |wA(s, t)| and |wA∗(s, t)|, taken over all pairs (s, t) and
routing schemes A∗ that follow similar restrictions as A. In particular, we are
interested in routing schemes which also use landmarks, obey the same bounds
on region size as A, and follow the same routing scenario, that is, MA travels
from s to t by first traveling from s to lm(s), then from lm(s) to lm(t), and



finally from lm(t) to t. Note that the stretch overhead can also be defined as the
maximum ratio between the stretch factors SFA,G and SFA∗,G, taken over all
similarly restricted routing schemes A∗.

3 Distributed routing in arbitrary trees

In this section we present a distributed routing scheme, which we call Tree-
Landmarks Routing (TLR). This scheme consists of three algorithms: an algo-
rithm for selecting landmarks in arbitrary trees, an algorithm for distributing
routing information to the nodes, and an agent navigation algorithm.

3.1 Landmark selection algorithm

Given a tree T and an upper bound L on the region size, the algorithm presented
below selects landmarks in T and assigns regions of T to the landmarks, in such
a way that the size of each region is between L′ =

√
L/δ and L, where δ is the

maximum fan-out of tree T . Consequently, the number of landmarks is at most
n/L′, that is, at most

√
δL times the best possible (n/L) with respect to the

upper bound L.

Algorithm Landmark-Selection(tree T , region size L)
select a root r0 for T arbitrarily
set R := {r0}
set L′ := b

√
L
δ c (* the choice of L′ will be justified in Prop. 1; we assume L > δ

*)
(* landmark selection – assignment of regions to landmarks *)

while R 6= ∅ do
pick an element r from R
add r to the set of landmarks and remove it from R
traverse subtree T (r) rooted at r in BFS manner
until L′ nodes have been visited or there are no nodes left in T (r)
assign visited nodes of T (r) to region(r)
add unvisited nodes that are adjacent to region(r) to R

end while

(* merging of non-full regions with parent regions *)
for each r such that |region(r)| < L′ do

let r′ be the landmark of parent(r) (* parent(r) ∈ region(r′) *)
assign all nodes in region(r) to r′

remove r from the set of landmarks
end for

The algorithm builds regions of size L′ starting from the root of the tree
and traversing the tree in a BFS manner. When all nodes have been visited,
the algorithm assigns each region of size smaller than L′ to the landmark of its



parent region. We will show in Prop. 1 that the selection of L′ guarantees that
the size of any augmented region does not exceed L. We will also give an upper
bound on the number of landmarks selected by our algorithm. We first state a
simple lemma.

Lemma 1. The region of nodes assigned to a landmark r by algorithm Landmark-
Selection forms a subtree rooted at r.

Proposition 1. Algorithm Landmark-Selection partitions a tree into regions of
size at most L. The total number of regions is O(

√
δ n√

L
), where δ is the maximum

fan-out of tree T .

Proof. Let the border b(S) of a region S be the set of nodes in this region that
have children outside the region. Due to the fact that regions are formed by
using BFS traversal, the border of S may contain: a) leaves of S and b) at most
one internal node of S, namely the parent of the leaf that was included in S last.

A region S of size L′ can be augmented by small (i.e. of size < L′) regions
rooted at nodes that are adjacent to nodes in the border of S. We call these
regions child regions of S and their landmarks child landmarks of S. Let us now
give an upper bound on the number of child landmarks.

Clearly, the number of child landmarks of S can be at most |b(S)|δ. We
distinguish between two cases:

– The root of S does not belong to b(S). In this case the number of child
landmarks of S is at most (L′ − 1)δ.

– The root of S belongs to b(S) (note that this can only happen if L′ ≤ δ).
In this case S is a tree of height 1, consisting of its root and L′ − 1 leaves.
Therefore, the root may have at most δ−(L′−1) children outside S; together
with the children of leaves of S we get an upper bound of (L′ − 1)δ + (δ −
(L′ − 1)) = L′(δ − 1) + 1 on the number of child landmarks of S.

The above give an unconditional upper bound of L′δ −min(L′ − 1, δ) ≤ L′δ
on the number of child landmarks of S.

An upper bound on the size of S′ (S after augmentation) is given by

|S′| ≤ (# child landmarks of S)(L′ − 1) + L′

≤ L′2δ − L′(δ − 1) ≤ L′2δ ≤ L

where the last inequality holds because L′ = b
√

L/δc.
Note that L′ ≥ (

√
L
δ )/2 since L > δ. Therefore, the number of regions (also

of landmarks) is at most n
L′ ≤ 2n√

L
δ

= O(
√

δ n√
L

).

Region size relaxation. We can relax the maximum size of a region by means of
a parameter α; in particular, for any α > 1 we may specify αL as the maximum
region size. Then, the upper bound on the number of landmarks will become√

δ
α

n√
L

, that is, it will be reduced by
√

α. Notice also that by setting α = Lδ



we can guarantee an optimal (with respect to an ‘ideal’ region size L) number of
landmarks n/L, at a cost of allowing the size of a region to increase up to δL2.
Remark: We have assumed that L > δ. For cases in which L ≤ δ it is not clear
what would be a reasonable landmark selection strategy. For example, consider
a star with n nodes. For L < n, it turns out that there would be at most one
region with more than one nodes (the one containing the center), and several
regions consisting of a single landmark (recall that we insist in keeping regions
connected). Therefore, the number of landmarks would be Ω(n), which would
lead to poor memory efficiency (not better than that of any standard routing
method).

3.2 Memory Requirements

This section details the routing information assignment scheme. The information
distribution algorithm is as follows:

Starting from the root, traverse the tree in a DFS manner and assign labels
to nodes. Also, assign port labels to edges: for every node u assign port labels
1, . . . , d(u) to its outgoing edges, where d(u) is the degree of u. In particular,
assign port label 1 to the edge leading from u to its parent.

Store the information of the graph topology as follows:

– Type 1 info (all nodes): At every node u only its label has been stored;
port 1 leads to parent(u). Note that if u is not a landmark this port is the
one that leads to the next node in the path 〈u → lm(u)〉; if u is a landmark,
this port leads to the next node in the path to its parent landmark.

– Type 2 info (landmarks only): At every landmark m, for each node v in
the region of m store the label of v (for simplicity we will call it also v), the
label of v’s parent, and the port j which leads from parent(v) to v. More
precisely, the entry for v is [v : parent(v), j]; if v is a child of m then the
entry is [v : m, j].

– Type 3 info (landmarks only): At every landmark m, for any child land-
mark m′ of m store [m′ : parent(m′), j | Rm′ ], where j is the port leading
from parent(m′) to m′, and Rm′ is the node with the greatest label among
all nodes in the subtree rooted at m′.

In the next section we will describe how the above information can be used
by an agent in order to efficiently find its way from any node s to any node t.
We now show the space requirements of the above scheme in a real RAM model,
where labels consume O(1) space.

Proposition 2. The above routing table assignment scheme requires O(δL) space
for each landmark. The entire space needed is O(n).

Proof. The space needed at a landmark is as follows:
- O(1) for type 1 info, as above.
- O(L) for type 2 info (since there are at most L nodes associated with a landmark
and for each one a constant number of labels needs to be stored),



- O(δL) for type 3 info (since there are at most δL child landmarks of a landmark
m and for each of them a constant number of labels needs to be stored).

Finally, the total space needed for the information stored in the tree is O(n)
because:
- for type 1 info we need to store O(n) port numbers in total,
- for type 2 info we need to store O(|region(m)|) labels at each landmark m,
which gives a total of O(n) labels
- for type 3 info we need to store O(# child landmarks of m) labels at each

landmark m, which gives a total of O(# landmarks) = O(
√

δ
Ln) labels, by

Proposition 1.

3.3 Navigation Algorithm

We now describe a navigation algorithm that MA can use to find its way from
node s to node t. In the following we denote by u the current node where MA is
located (initially u = s); we describe the appropriate action of MA, depending
on the kind of u and the routing information obtained so far. We use a boolean
variable direction which takes values ‘up’ or ‘down’, showing MA should move
upwards or downwards. Initially direction is set to ‘up’.

– Case a. If u is not a landmark and direction is ‘up’, then go to parent(u).
– Case b. If u is not a landmark and direction is ‘down’, then follow the first

port in the list of ports obtained in previous steps (see below), and remove
this port from the list. (In this case MA moves towards destination t — if
not already there — or towards a landmark m′ containing t in its subtree.)

– Case c. If u is a landmark, look at type 2 info table in order to find t. If t
is found, set direction to ‘down’, and use table information to construct a
sequence ports(u → t) of ports leading from u to t. Store ports(u → t) to
local (agent’s) memory, and follow the first port in ports(u → t) (removing
this port from the sequence).

– Case d. If u is a landmark but t is not found within type 2 info table, look
at type 3 info table for entries [m′ : v, j | Rm′ ] such that m′ ≤ t ≤ Rm′ .
If such an entry is found, then set direction to ‘down’, and use type 2 info
table to construct a sequence ports(u → v) of ports leading from u to v;
append port j to ports(u → v). Store ports(u → v) | j to local (agent’s)
memory, and follow ports(u → v) | j to eventually reach m′.

– Case e. If u is a landmark but t is not found in tables of type 2 or type 3
info then move towards the parent of u.

Below we show the correctness of TLR, in particular, that a mobile agent
situated at node s will manage to reach node t following this scheme.

Proposition 3. Given a graph G, a target node t and an agent MA situated at
some node s of G, if G is preprocessed by using landmark selection and infor-
mation distribution algorithms of TLR then MA will eventually reach t by using
the Navigation Algorithm of TLR.



Proof. We will show that the agent follows 4 particular walks in a row: 〈s →
lm(s)〉, 〈lm(s) → lclm(s, t)〉, 〈lclm(s, t) → lm(t)〉, and 〈lm(t) → t〉. Note that
some of these may be of zero length.

If s is a landmark then MA is already in lm(s), otherwise it moves up (case
a) until it reaches lm(s).

If t is ‘visible’ from lm(s) (that is, belongs to the subtree rooted at lm(s))
then MA is already in lclm(s, t), otherwise it moves upwards (case e and then
case a repeatedly, possibly repeating this pattern several times) until it reaches a
landmark m such that t belongs to the subtree of m (at least one such landmark
exists: the root). Clearly, m = lclm(s, t).

If t ∈ region(m) then MA is already in lm(t). Otherwise, it starts moving
down (case d and then case b repeatedly) to reach the child landmark of m that
contains t in its subtree. This process is possibly repeated several times until
MA reaches lm(t).

It then follows the path implied by the routing information of lm(t) (case c
and then case b repeatedly) in order to reach t.

All the calculations needed by MA in order to determine each time the port
by which it has to leave its current position can be done in time linear in the
number of nodes.

4 Efficiency of TLR scheme

In this section we give estimations for the efficiency of Tree-Landmarks Routing
(TLR) in terms of the stretch factor and the stretch overhead achieved.

4.1 Stretch factor analysis

In the following we establish a stretch factor for TLR in trees which is propor-
tional to the region height.

Proposition 4. TLR achieves stretch factor SFTLR,T = 2h + 1 on a tree T ,
where h is the maximum height of a region of T .

Proof. Consider a pair of nodes s, t. The walk followed by MA under TLR scheme
can be analyzed in the following paths (in this order): 〈s → lca(s, t)〉, 〈lca(s, t) →
lclm(s, t)〉, 〈lclm(s, t) → lca(s, t)〉, and 〈lca(s, t) → t〉. Clearly, all these paths
are shortest paths since they are simple. Therefore,

SFTLR,T = maxs,t
|p(s, lca(s, t))|+ 2|p(lca(s, t), lclm(s, t))|+ |p(lca(s, t), t)|

|p(s, t)|

≤ 1 + maxs,t
2|p(lca(s, t), lclm(s, t))|

|p(s, t)|

because the shortest path p(s, t) between s and t consists of shortest paths
p(s, lca(s, t)) and p(lca(s, t), t).



The distance |p(lca(s, t), lclm(s, t))| is at most h, since lclm(s, t) is the land-
mark of lca(s, t). Therefore, SFTLR,T ≤ 2h + 1. On the other hand, there is a
case in which |p(lca(s, t), lclm(s, t))| = 2h and |p(s, t)| = 1. Namely, whenever s
is parent of t (therefore s = lca(s, t)), and s and t are in different regions (t is a
child landmark of lm(s)).

Taking into account that h is bounded by the maximum region size we obtain
the following.

Corollary 1. Tree-Landmarks Routing achieves a stretch factor of O(L).

4.2 Stretch overhead with upper and lower bounds on region size

Next we establish a constant stretch overhead for TLR in trees where all regions
have size between L′ and L. This restriction is necessary in order to have a fair
comparison to an optimal routing scheme. Notice that, for any routing scheme
under consideration, since each region size is between L′ and L, the number of
landmarks is between n/L and n/L′. We first prove the result for line graphs
and full δ-ary trees and then sketch a proof for arbitrary trees.

Proposition 5. TLR achieves stretch overhead 2 when applied to line graphs.

Proof. TLR, when applied to a line, produces regions which are also lines. All
these regions have size L′, except possibly for one or two ‘leaf’ regions which are
merged with their ‘parent’ regions. Therefore the maximum height of a region is
at most 2L′.

As mentioned above, any routing scheme A∗ that we would like to compare
to TLR will produce regions of size ≥ L′. Clearly, the stretch factor for one of
these regions alone will be ≥ L′ (consider two neighbor nodes, as far from the
landmark as possible). Therefore, the stretch overhead is at most 2.

We will now show that this is also the case for full (i.e. complete) δ-ary trees.

Proposition 6. TLR achieves stretch overhead 2 when applied to full δ-ary
trees.

Proof. Let hδ(r) denote the height of a complete δ-ary tree with r nodes; note
that hδ(r) = Θ(logδ r). During its last stage, Landmark-Selection augments a
region R by combining it with regions that have the following properties: their
height is smaller than hδ(L′) and their landmarks are adjacent to nodes of R
that are in distance hδ(L′) or hδ(L′)− 1 from the landmark of R. Therefore, the
maximum height of a region after augmentation is at most 2hδ(L′).

As mentioned above, A∗ makes regions of size ≥ L′. Clearly, such a region
cannot have height smaller than hδ(L′), which implies that the stretch overhead
of TLR is at most 2.

Next, we sketch how to extend this result to arbitrary trees.



Proposition 7. TLR achieves stretch overhead 4 when applied to an arbitrary
tree.

Proof. Let h denote the maximum height of a region R of a tree T produced
by Landmark-Selection algorithm in its first phase (that is, before merging).
As argued in the proof of Prop. 6 the maximum region height at the end of
Landmark-Selection will be at most 2h. Consider any partitioning of T into
connected regions of size at least L′; it can be shown that nodes of R cannot
be accommodated into regions that all have height smaller than h

2 . Therefore,
there exists at least one region of height h

2 , leading to a stretch overhead of 4.

4.3 Stretch overhead with upper bounds on region size and number
of landmarks

We now consider a different definition of stretch overhead. Namely, we allow
comparison with any routing scheme that respects the same upper bound L on
the region size and the same upper bound on the number of landmarks n/L′.

Propositions 5 and 6 can be adapted to show that TLR achieves optimal
(within a factor of 2) stretch overhead in the extreme cases of line graphs and
full trees. This is because the bound on the number of landmarks guarantees
that there must be at least one region of size ≥ L′. However, this does not hold
for trees that are not complete, as shown by the following example.

Example of Θ( L
δ log2

δ L

1/4
) stretch overhead. Consider a graph consisting

of a line segment S with L′ nodes, followed by t complete δ-ary trees, T1, . . . , Tt,
each with L′ nodes; the root of T1 is adjacent to a leaf of S, and the root of
Ti, 2 ≤ i ≤ t, is adjacent to a leaf of Ti−1. Algorithm Landmark-Selection will
divide such a graph to t + 1 regions, namely S and the Ti trees. Therefore, the
stretch factor will be Θ(L′) due to the height of S.

On the other hand, it is possible, using the same number of landmarks (i.e.
t+1), to split S into t regions of height L′/t and construct one region containing
all Ti’s, provided that tL′ ≤ L. The maximum region height of the new parti-
tion is h∗ = max(L′/t, t logδ(L′)); this is minimized for t =

√
L′/ logδ L′ giving

h∗ =
√

L′ logδ L′. Hence, the stretch overhead is equal to L′/h∗ =
√

L′

logδ L′ =

Θ( L
δ log2

δ L

1/4
).

5 Conclusions

In this work we have proposed Tree-Landmarks Routing (TLR), which is a dis-
tributed routing scheme appropriate for tree networks. Given an upper bound L
on region size, TLR partitions a tree T to O(

√
δ n√

L
) regions of size at most L,

achieving a reasonable stretch factor and an optimal (within a constant) stretch
overhead, while storing linear amount of information to landmarks and constant
information per node to non-landmark nodes.



The optimal stretch overhead of TLR is achieved for the model with both
upper and lower bounds on the size of regions. An interesting open question
is whether we can devise a routing scheme with constant or even logarithmic
stretch overhead for arbitrary trees under the model with upper-bounded region
size and number of landmarks.

A second question is whether we can reduce the number of regions to e.g.
O( n

L ) without affecting the efficiency of the scheme. A possible modification of
our landmark-selection algorithm toward this direction is the following: instead
of merging regions of size < L′ only with parent regions, we do the same with
all regions of size < L as long as no region size becomes > L, in a bottom-up
manner. This makes larger regions, resulting to fewer landmarks. In practice, we
expect that for large trees most regions will be of size close to L and only a few
regions will have size L′. However, to quantify these claims we would need extra
hypotheses on the topology of our tree. On the downside, such a modification
shall increase the stretch factor.

Another important issue is whether TLR can be extended to work for arbi-
trary graphs, and what the efficiency will be. A possible approach might be the
following: given a graph G, specify a BFS spanning tree T for G, rooted at a
minimum eccentricity node; then apply TLR to tree T . Clearly, this would lead
to the same trade-off, as that for trees, between the region size and the number
of landmarks and the same memory requirements. On the other hand, it seems
that the stretch factor and overhead can become arbitrarily large. Therefore, a
very interesting question is whether there exist routing schemes with low stretch
overhead for arbitrary graphs, under any of the two overhead measuring models.
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