
Hardness and Approximation Results for Black

Hole Search in Arbitrary Graphs⋆

Ralf Klasing⋆⋆, Euripides Markou⋆ ⋆ ⋆, Tomasz Radzik†, and Fabiano Sarracco‡

Abstract. A black hole is a highly harmful stationary process residing
in a node of a network and destroying all mobile agents visiting the node,
without leaving any trace. We consider the task of locating a black hole
in a (partially) synchronous arbitrary network, assuming an upper bound
on the time of any edge traversal by an agent. For a given graph and a
given starting node we are interested in finding the fastest possible Black
Hole Search by two agents (the minimum number of agents capable to
identify a black hole). We prove that this problem is NP-hard in arbitrary
graphs, thus solving an open problem stated in [2]. We also give a 7/2-
approximation algorithm, thus improving on the 4-approximation scheme
observed in [2]. Our approach is to explore the given input graph via
some spanning tree. Even if it represents a very natural technique, we
prove that this approach cannot achieve an approximation ratio better
than 3/2.

Keywords: approximation algorithm, black hole search, graph explo-
ration, mobile agent, NP-hardness

1 Introduction

Problems related to security in a network environment have attracted many
researchers. For instance protecting a host, i.e., a node of a network, from an
agent’s attack [11, 12] as well as protecting mobile agents from “host attacks”,
i.e., harmful items stored in nodes of the network, are important with respect to
security of a network environment. Various methods of protecting mobile agents
against malicious hosts have been discussed, e.g., in [8–13].

⋆ Research supported in part by the European project IST FET CRESCCO (contract
no. IST-2001-33135), the Royal Society Grant ESEP 16244, EGIDE, and the Am-
bassade de France en Grèce/Institut Français d’ Athènes. Part of this work was done
while E. Markou, T. Radzik and F. Sarracco were visiting the MASCOTTE project
at INRIA Sophia Antipolis.

⋆⋆ MASCOTTE project, I3S-CNRS/INRIA/Université de Nice-Sophia Antipolis, 2004
Route des Lucioles, BP 93, F-06902 Sophia Antipolis Cedex (France), email
Ralf.Klasing@sophia.inria.fr

⋆ ⋆ ⋆ Department of Informatics and Telecommunications, National and Kapodistrian
University of Athens, email emarkou@softlab.ece.ntua.gr

† Department of Computer Science, King’s College London, London, UK, email
radzik@dcs.kcl.ac.uk

‡ Dipartimento di Informatica e Sistemistica, Università di Roma “La Sapienza”, email
Fabiano.Sarracco@dis.uniroma1.it

2 Ralf Klasing, Euripides Markou, Tomasz Radzik, and Fabiano Sarracco

We consider here malicious hosts of a particularly harmful nature, called
black holes [1–6]. A black hole is a stationary process residing in a node of a
network and destroying all mobile agents visiting the node, without leaving any
trace. We are dealing with the issue of locating a black hole: assuming that
there is at most one black hole in the network, at least one surviving agent must
find the location of the black hole if it exists, or answer that there is no black
hole, otherwise. The only way to locate the black hole is to visit it by at least
one agent, hence, as observed in [4], at least two agents are necessary for one
of them to locate the black hole and survive. Throughout the paper we assume
that the number of agents is the minimum possible for our task, i.e., 2, and that
they start from the same node, known to be safe.

The issue of efficient black hole search was extensively studied in [3–6] in
many types of networks under the scenario of a totally asynchronous network
(i.e., no upper bound on this time needed for an edge traversal). In this setting
it was observed that, in order to solve the problem, the network must be 2-
connected. Moreover, it is impossible to answer the question of whether a black
hole actually exists in an asynchronous network, hence [3–6] work under the
assumption that there is exactly one black hole and the task is to locate it.

In [1, 2] the problem is studied under the scenario we consider in this paper
as well. The network is partially synchronous, i.e. there is an upper bound on
the time needed by an agent for traversing any edge. This assumption makes a
dramatic change to the problem: the black hole can be located by two agents
in any graph; moreover the agents can decide if there is a black hole or not in
the network. If, without loss of generality, we normalize to 1 the upper bound
on edge traversal time, then we can define the cost of a Black Hole Search as
the time taken under the worst-case location of the black hole (or when it does
not exist in the network), assuming that all the edge traversals take time 1. In
[2] the BHS problem is studied in tree topologies, while in [1] a variant of the
problem is studied in which the black hole can be located only in a given set of
nodes (which is a subset of the set of nodes of the graph) and it is proved that
this variant is NP-hard in an arbitrary graph.

In this paper we show that the problem of finding the minimum cost Black
Hole Search by two agents in an arbitrary graph is NP-hard even under the
restricted scenario of one safe node (the starting node), thus solving an open
problem stated in [2]. Moreover, we give a 7/2-approximation algorithm for this
problem, i.e., we construct a polynomial time algorithm which, given a graph
and a starting node as input, produces a Black Hole Search whose cost is at
most 7/2 times larger than the best Black Hole Search for this input. This result
improves on the 4-approximation scheme observed by [2]. Finally, we show that
any Black Hole Search that explores the given input graph via some spanning
tree cannot have an approximation ratio better than 3/2.

Complexity Results for Black Hole Search in Graphs 3

2 Model and Terminology

Let G = (V, E) be a connected graph. We assume that the nodes of G can be
partitioned into two subsets: a set of black holes B (V , i.e. nodes destroying
any agent visiting them without leaving any trace; and a set of safe nodes V \B.
During a Black Hole Search (or simply BHS), a set of agents starts from a special
node s ∈ V \ B (which we call starting node), and explores the graph G by
traversing its edges. Obviously s is known to be a safe node; more generally,
there exists a subset Ŝ ⊆ V \ B of nodes initially known to be safe. The target
of the agents is to report to s the information on which nodes of G are black
holes.

In this paper we consider the following restricted version of the problem:
|B| ≤ 1 (i.e. there can be either one black hole or no black holes at all in G),

Ŝ = {s} (only the starting node is known to be safe), the set of agents has size 2,
agents have a complete map of G, agents have distinct labels (we will call them
Agent-1 and Agent-2) and they can communicate only when they are in the same
node (and not, e.g., by leaving messages at nodes). Finally, the network is (at
least partially) synchronous. We consider the following formalization, called the
Minimum Cost BHS Problem, or simply BHS problem.

Instance : a graph G = (V, E), and a node s ∈ V .
Solution : an exploration scheme E = (X, Y) for G and s, i.e. two equal-size

sequences of nodes in G, X = 〈x0, x1, . . . , xT 〉 and Y = 〈y0, y1, . . . , yT 〉 which
satisfy the feasibility constraints listed below.

Measure : the cost of the BHS based on E .

When a BHS based of E is performed in G, Agent-1 follows the path defined
by X while Agent-2 follows the path defined by Y, in synchronized steps. In
other words, at the end of the i-th step of the exploration scheme, Agent-1 is
in node xi, while Agent-2 is in node yi. We say that each step has length one
time unit. As soon as an agent deduces the existence and the exact location of
the black hole, it “aborts” the exploration and returns to the starting node s by
traversing nodes in V \B. A pair of sequences of nodes X and Y defines a feasible
exploration scheme for a graph G and a starting node s, which can be effectively
used as a basis for a BHS on G, if it satisfies the following four constraints.

Constraint 1: x0 = y0 = s, xT = yT .
Constraint 2: for each i = 0, . . . , T − 1, either xi+1 = xi, or (xi, xi+1) ∈ E;

similarly for Agent-2, either yi+1 = yi or (yi, yi+1) ∈ E.

Constraint 3:
⋃T

i=0 {xi} ∪
⋃T

i=0 {yi} = V .

We need some further definitions to state the fourth constraint. Given an
exploration scheme E = (X, Y), the explored territory at step i is

Si =

{⋃i
j=0 {xj} ∪

⋃i
j=0 {yj} , if xi = yi;

Si−1, otherwise.

4 Ralf Klasing, Euripides Markou, Tomasz Radzik, and Fabiano Sarracco

Observe that, by Constraint 1, S0 = {s} and, by Constraint 3, ST = V . A
node v is explored at step i if v ∈ Si, otherwise it is unexplored. The
definition of explored territory covers the assumption that, whenever the two
agents are in the same node, they communicate to each other that the nodes of
the network they visited are safe. A meeting step (or simply meeting) is the
step 0 and every step 1 ≤ j ≤ T such that Sj) Sj−1. Observe that for each
meeting step j, we must have xj = yj (but not necessarily the opposite); we call
this node a meeting point. Each sequence of steps 〈j + 1, j + 2, . . . , k〉 between
two consecutive meetings j and k is a phase of length k−j. Now we can give the
last constraint for a feasible exploration scheme. It says that during each phase,
an agent can visit at most one unexplored node, and the same unexplored node
cannot be visited by both agents (see [2]).

Constraint 4: for each phase 〈j + 1, . . . , k〉,
| {xj+1, . . . , xk} \ Sj | ≤ 1, | {yj+1, . . . , yk} \ Sj | ≤ 1, and
{xj+1, . . . , xk} \ Sj 6= {yj+1, . . . , yk} \ Sj .

Lemma 1. If k is a meeting step of exploration scheme E, then xk = yk ∈ Sk−1.
Each phase of E has length at least two.1

Any length-2 phase 〈j + 1, j + 2〉 at the end of which the explored territory
increases by 2 nodes must have the following structure. Let m be the meeting
point at step j. During step j +1, Agent-i visits an unexplored node vi adjacent
to m. In step j + 2, the agents meet in a safe node adjacent to both v1 and v2.
Note that this node can be either m, and in this case we denote the phase as
b-split(m, v1, v2), or a distinct node m′, and in this case we denote the phase as
a-split(m, v1, v2, m

′).

For an exploration scheme E = (X, Y) and a location of a black hole B,
where B = ∅ or B = {b} ∈ (V \ {s}), the execution time is defined as follows.
If B = ∅, then the execution time is equal to the length T of the exploration
scheme, plus the shortest path distance from xT (= yT) to s. In this case the
agents must perform the full exploration, and then get back to s. If B = {b},
then let j be the first step in E such that b ∈ Sj. The execution time in this case
is equal to j plus the shortest path distance from xj(= yj) to s avoiding b. One
agent, say Agent-1, vanishes into the black hole b during the phase ending at
step j, so it cannot meet Agent-2 at the expected meeting point xj = yj . Thus
the surviving Agent-2 knows at the end of step j the exact location of the black
hole (see Constraint 4), so it can go straight back to s. The cost of the BHS
based on an exploration scheme E = (X, Y) is the maximum of the execution
times of E for all possible locations of the black hole B.

It is easy to check that if G is a tree, then the case B = ∅ gives always the
maximum execution time among all possible locations of the black hole in the
nodes of G. If G is an arbitrary graph, then this property does not always hold.

1 Some proofs are omitted due to the space restrictions. reasons.

Complexity Results for Black Hole Search in Graphs 5

3 NP-Hardness of the BHS problem in Arbitrary Graphs

In this section, we prove the NP-hardness of the BHS problem in arbitrary graphs
by providing a reduction from a particular version of the Hamiltonian Circuit
problem to the decision version of the BHS problem.

cpHC problem

Instance : cubic planar graph G = (V, E), and an edge (x, y) ∈ E;
Question : does G contain a Hamiltonian cycle that includes edge (x, y)?

dBHS problem

Instance : graph G′ = (V ′, E′), with a starting node s ∈ V ′, and a positive
integer X ;

Question : does there exist an exploration scheme E for G′ starting from s,
such that the BHS based on E has cost at most X?

One can check that the reduction from the 3-SAT problem to the Hamiltonian

Cycle problem given in [7] proves actually that the cpHC problem is NP-hard.
For an arbitrary instance of the cpHC problem (i.e. for each planar cubic graph
G = (V, E) and edge (x, y) ∈ E), we construct in linear time a corresponding
instance of the dBHS problem (i.e. a graph G′, a starting node s, and an integer
X) such that the original instance is a positive instance of the cpHC problem if
and only if the constructed instance is a positive instance of the dBHS problem.

Since G is planar, we can find in linear time an (arbitrary) combinatorial
planar embedding of G, i.e. a clockwise order Lv of the neighbors of each node
v ∈ V . We then construct both G′ and its embedding, as an extensions of G and
its (combinatorial planar) embedding, in the following five steps.

1. G′ has originally the same nodes (original nodes), the same edges and the
same embedding as G.

2. Replace the edge (x, y) with the edges (x, s) and (s, y), where s /∈ V is a new
node. The node s replaces the node y in Lx, and the node x in Ly.

3. For each edge (v, w) in the current graph (the current set of edges is E ∪

{(x, s), (s, y)} \ {(x, y)}) add two nodes z
(v,w)
1 and z

(v,w)
2 (twin nodes) and

four edges (z
(v,w)
1 , v) , (z

(v,w)
1 , w), (z

(v,w)
2 , v) and (z

(v,w)
2 , w). For the embed-

ding, place z
(v,w)
1 before and z

(v,w)
2 after w in Lv. Similarly, place z

(v,w)
1 after

and z
(v,w)
2 before v in Lw.

4. For each node v ∈ V ∪{s} and for each pair of nodes z
(v,w)
i , z

(v,u)
j consecutive

in Lv, add an edge between these z
(v,w)
i and z

(v,u)
j . We call this edge a

shortcut edge. Let z
(v,u)
j follow z

(v,w)
i in Lv. Then, in the embedding of G′,

place z
(v,u)
j immediately before v in the order of the neighbors of z

(v,w)
i , and

place z
(v,w)
i immediately after v in the order of the neighbors of z

(v,u)
j .

5. For each node v ∈ V ∪ {s} \ x, add a new node vF (flag node) and an edge
(v, vF). For the embedding, vF can be in any place in Lv.

6 Ralf Klasing, Euripides Markou, Tomasz Radzik, and Fabiano Sarracco

Figure 1, which will be used as an illustration for the proof of Lemma 5,
illustrates also the construction of graph G′. If n = |V | and e = |E|, are the
number of nodes and edges in G, then graph G′ has n original nodes, one starting
node s, n flag nodes and 2(e + 1) twin nodes. Since in cubic graphs e = 3

2n, the
total number of nodes in G′ is 5n + 3. This construction can be done in linear
time with respect to the size of G. We assume that s is the starting node, while
the remaining 5n + 2 nodes are initially unexplored. We set X = 5n + 2.

Lemma 2. If u and w are two original nodes having a common neighbor v in
G, then there exists in G′ a path [u, z′, z′′, w] where z′ is a twin node for the edge
(u, v) and z′′ is a twin node for the edge (v, w).

Lemma 3. Each twin node in G′ has degree 4.

Lemma 4. If the graph G has a Hamiltonian cycle that includes edge (x, y),
then there exists an exploration scheme EHC on G′ starting from s, such that
the BHS based on it has cost at most 5n + 2.

Proof. Let {v1 = y, e1, v2, . . . , en−1, vn = x, en, v1 = y} be such Hamiltonian cy-
cle in G. Consider the exploration scheme EHC defined by the following sequence
of phases:

1. b-split(s, sF , y), where sF is the flag node of s;
2. a-split(s, z1, z2, y), where z1 and z2 are the twin nodes of the edge (s, y);
3. for each node vi of the Hamiltonian cycle, with (i = 1, . . . , n − 1):

(a) let vj be the third neighbor of vi, other than vi−1 and vi+1; if j > i then
b-split(vi, z1, z2), where z1 and z2 are the twin nodes of (vi, vj);

(b) b-split(vi, v
F
i , vi+1), where vF

i is the flag of vi;
(c) a-split(vi, z1, z2, vi+1), where z1 and z2 are the twin nodes of the edge

(vi, vi+1);
4. a-split(x, z1, z2, s), where z1 and z2 are the twin nodes of the edge (x, s).

Now let us compute the length of EHC . As we have seen in Section 2, each
a-split and b-split phase has length 2, and increases the explored territory by 2
nodes. The overall number of phases is therefore (5n + 2)/2 and hence EHC has
length 5n + 2. Notice that this is also the exploration time of EHC , for the case
B = ∅, since EHC ends in s.

Claim. Consider the meeting step when the agents are to meet at a node vi. If
a black hole has been just discovered, then the remaining cost of the BHS is not
greater than the remaining cost in the case of no black hole.

Proof. (Sketch) It suffices to show that if there is a black hole in G′, then the
surviving agent can keep following the Hamiltonian Cycle (possibly by using a
shortcut edge), and get to s in less time units than in the case B = ∅.

This implies that also the cost of the BHS based on EHC is 5n + 2, i.e. there
is no allocation of the black hole that yields a larger exploration time. Observe
that the BHS defined above is optimal since it is not possible to explore 5n + 2
nodes in less that 5n + 2 time units. ⊓⊔

Complexity Results for Black Hole Search in Graphs 7

Lemma 5. If there exists an exploration scheme on G′ starting from s such that
the cost of the BHS based on it has cost at most 5n + 2, then the graph G has a
Hamiltonian cycle that includes edge (x, y).

Proof. Let Eσ be such exploration scheme. By Lemma 1, each phase of Eσ has
length at least two and cannot explore more than two unexplored nodes. Since
G′ has 5n + 2 unexplored nodes, Eσ must end in s, and each of its phases must
be either an a-split or a b-split . Consider the sequence Mσ of the meeting points
established for Eσ at the end of each a-split , excluding the last one which is s.

Claim. Nodes x and y must be the two endpoints of Mσ and s cannot be in Mσ.

Each meeting point vi in Mσ other than s must have at least degree 5 since
one neighbor is needed for the initial exploration of vi, two unexplored neighbors
are needed for the a-split that ends in vi and two further unexplored neighbors
are needed for the a-split that leaves vi. For this reason only the original nodes
of G′ (neither flags nor twins) can be in Mσ. Finally, each flag node has to be
explored with a b-split having as meeting point the original node adjacent to it,
hence each original node of G′ (i.e. each node of G) must be in Mσ. Now we
prove that the sequence Mσ defines a Hamiltonian cycle on G, i.e.:

a) each node of G appears exactly once in Mσ;

b) if nodes vi and vj are consecutive in Mσ, then the edge (vi, vj) must be
in G.

We start by proving a). We have seen that each node of G is in Mσ, thus we
have to prove that no node appears twice or more. Compute the neighbors needed
by a node vi in Mσ: at least one neighbor is needed for the initial exploration
of vi (two neighbors, if it is done through an a-split). Then, for each occurrence
of vi in Mσ, two unexplored neighbors are needed for meeting in vi with an
a-split , and two additional unexplored neighbors are needed for leaving vi with
an a-split . Moreover the flag vF

i has to be explored with a b-split from vi, hence
another unexplored neighbor of vi is needed. If the node vi occurs k times in Mσ,
then the total number of neighbors needed by vi is at least 1 + 4k + 2 = 3 + 4k.
Since each original node in G′ has only 10 neighbors (as G is a cubic graph), it
must be k ≤ 1, thus each node appears exactly once in Mσ.

Now we prove property b) of Mσ. According to the structure of G′, a-split
operations can either explore two twin nodes of an original edge (in this case
property b) is verified since the meeting point is adjacent in G to the previous
one), or explore two original nodes of G′ and meet in another original node which
may not be adjacent to the previous meeting point, thus violating property b).
Suppose that this latter kind of split (a big a-split) happens from a node A to a
node B; see Figure 1. In order to do this, A must have two unexplored original
neighbors (C and D in the figure) both having B as a neighbor. B must be
already explored, therefore the last original neighbor of B (E in the figure) must
have already been a meeting point (we can suppose without loss of generality
that the one from A to B is the first big a-split in Mσ). At this point no other big
a-splits can be performed from B (all its original neighbors are now explored)

8 Ralf Klasing, Euripides Markou, Tomasz Radzik, and Fabiano Sarracco

A

B

E

FDC

Fig. 1. A big a-split from A to B. Big circles – original nodes in G; small circles – twin
nodes; shortcut edges are dotted; flag nodes are not represented.

and, by property a), E cannot be again a meeting point, thus the sequence Mσ

can have either C or D as the next meeting point. Supposing that C is that
one, consider the instant when D becomes a meeting point. We cannot get to D
with a big a-split, since D does not have two neighbors in G that are unexplored,
hence also F has been already a meeting point. Now all the original neighbors
of D have already been a meeting point in Mσ, and none of them can be s, thus
there is no way to leave D without violating property a). Therefore there cannot
be any big a-split in σ, and thus also property b) is verified. ⊓⊔

4 An Approximation Algorithm for the BHS problem

One may approach the BHS problem in an arbitrary graph G in the following
way. First select a spanning tree in G and then search the graph using the tree
edges. As observed in [2], this approach guarantees an approximation ratio of 4
since the following exploration of a n-node tree requires at most 4(n− 1) steps.
Both agents traverse the tree together in, say, the depth-first order and explore
each new node v with a two-step probe phase: one agent waits in the parent p of
v while the other goes to v and back to p.

To follow this “spanning-tree” approach effectively, we need good exploration
schemes for trees and good spanning trees for those schemes. Intuitively a good
heuristic for the former problem should be to minimize the time spent by one
agent waiting for the other one. A good heuristic for the latter problem should
be to minimize the number of nodes without siblings in the selected spanning
tree. It may be difficult, if possible at all, to schedule exploration of such nodes
not using probe phases (which imply waiting).

Complexity Results for Black Hole Search in Graphs 9

We assume throughout this section that the starting node s in G has de-
gree at least 2. In Sections 4.1 and 4.2 we present algorithms Search-Tree(T)
and Generate-Tree(G), which implement the above general heuristics. Algorithm
Search-Tree(T) generalizes the algorithm proposed in [2] for so-called bushy trees.
The Spanning Tree Exploration (STE) algorithm returns for a given graph G the
exploration scheme computed by Search-Tree(TG), where TG is the spanning tree
computed by Generate-Tree(G). In Section 4.3 we show that the approximation
ratio of the STE algorithm is at most 7/2.

4.1 Exploration Schemes for Trees

Let T be a rooted n-node tree and let s denote its root. Our algorithm Search-
Tree(T) for constructing an exploration scheme for T uses the following order
L(T) of the nodes of T other than the root. We first order the children of each
node according to the number of descendants: a child with more descendants
comes before a child with fewer descendants and the ties are resolved arbitrarily.
Thus from now on T is an ordered rooted tree. Let 〈w1, w2, . . . , wp〉 be the
sequence of the internal nodes of T ordered according to their depth-first-search
numbers. The order L(T) is this sequence with each node wi replaced by the
(ordered) list of its children. The i-th node in the order L(T) will be denoted by
vi and called the i-th node of the tree. The odd (even) nodes of T are the nodes
at the odd (even) positions in L(T).

We classify all nodes other than the root s into the following three types. The
type-1 nodes are the leaves of T ; the type-3 nodes are the internal nodes with
at least one sibling; and the type-4 nodes are the internal nodes (other than the
root) without siblings. Informally, in the exploration scheme which we produce
for T a type-i node contributes i units to the total cost. Note that there is no
type 2. We denote by xt the number of type-t nodes. We consider first the case
when T does not have any type-4 nodes (x4 = 0) and has an odd number of nodes
(an even number of unexplored nodes). Agent-1 (Agent-2) will be responsible for
exploring the odd (even) nodes in the order L(T).

We construct first the exploration sequence YT for Agent-2. Initially YT =
〈w′

1 = s, w′
2, . . . , w

′
2p−1 = s〉 is the depth-first traversal of the p internal nodes

w1, w2, . . . , wp of T . For each internal node w in T , if v2(i+1), v2(i+2), . . . , v2(i+k)

are the children of w which are at even positions in L(T), then replace in YT

the first occurrence of w with the sequence w, v2(i+1), w, v2(i+2), w, . . . , v2(i+k), w.
That is, Agent-2 traverses the internal nodes of the tree in the depth-first manner,
and whenever it arrives during this traversal at an internal node w for the first
time, before proceeding to the next node it first explores all children of w which
are even nodes of T . The exploration sequence XT for Agent-1 is constructed
analogously. Since T has an odd number of nodes, both sequences YT and XT

have the same length 2p − 1 + (n − 1) = x1 + 3x3 + 1. Lemma 6 says how
these sequences are actually properly synchronized to form a valid (feasible)
exploration scheme for T . It can be proven by induction, considering different
kinds of relative positions of nodes v2i−2, v2i−1, v2i and their parents. Lemma 7
follows from Lemma 6 and the formula for the length of sequences YT and XT .

10 Ralf Klasing, Euripides Markou, Tomasz Radzik, and Fabiano Sarracco

Lemma 6. Let T be a tree rooted at s with 2q +1 ≥ 3 nodes and with no type-4
nodes. For the exploration scheme ET = (XT , YT) and i = 1, . . . , q,

1) there is the i-th meeting step m(i) in ET , so there is phase i in ET ;
2) the set of the explored nodes st step m(i) is Sm(i) = {s} ∪ {v1, . . . , v2i};
3) the meeting point at the end of phase i is the parent of node v2i.

Lemma 7. Let T be a tree rooted at s which has n = 2q +1 ≥ 3 nodes and does
not have any type-4 nodes. The exploration scheme ET = (XT , YT) is valid, can
be computed in linear time and its cost is equal to x1 + 3x3.

Now we consider a general tree T , which may have type-4 nodes. For each
type-4 node v in T , we add a new leaf l with parent v, placing l at the end of
the list of the children of v. If the total number of nodes, including the added
nodes, is even, then we add one more leaf as the last child of an arbitrary
internal node. The obtained ordered tree T ′ is as required in Lemma 7. We
obtain ET = (XT , YT) for T from ET ′ = (XT ′ , YT ′) for T ′ by replacing the
traversals of the added edges with waiting: if an added leaf l is, say, an odd node
in T ′ and has parent v, then replace l in XT ′ with v. Tree T ′ has x′

1 = x1 +x4 +β
leaves, for β ∈ {0, 1}, and x′

3 = x3 + x4 type-3 nodes. Thus, using Lemma 7, the
cost of ET is as given in the following lemma.

Lemma 8. The exploration scheme ET = (XT , YT) for a rooted tree T is valid,
can be computed in linear time and its cost is at most x1 + 3x3 + 4x4 + 1.

4.2 Generating a Good Spanning Tree of a Graph

We describe now our algorithm Generate-Tree(G) which computes a spanning
tree TG of a graph G such that the cost of the exploration scheme for G com-
puted by algorithm Search-Tree(TG) has cost at most 7/2 times worse than the
minimum cost of an exploration scheme for G. Algorithm Generate-Tree tries to
minimize the number of type-4 nodes. Following the terminology used in [2], we
define as bushy the rooted trees in which each internal node has at least two
children. Bushy trees do not have type-4 nodes. Algorithm Search-Tree computes
for a bushy tree the same exploration scheme as the algorithm proposed in [2],
and it was proven in [2] that that exploration scheme is optimal.

Algorithm Generate-Tree uses procedure Bushy-Tree(G′, v) which for a given
graph G′ = (V ′, E′) and a node v ∈ V ′ computes a maximal bushy tree T in G′

rooted at v (that is, there is no bushy tree T ′ rooted at v such that T (T ′ ⊆ E′).
Algorithm Generate-Tree consists of three steps. In Step 1 we compute vertex

disjoint trees T0, T1, . . . , Tk. using procedure Bushy-Tree. Tree T0 is rooted at s.
Tree Ti, i = 1, 2 . . . , k is returned by Bushy-Tree(G′, v), where G′ is the subgraph
of G induced by the set of nodes not covered by the previous trees T0, . . . , Ti−1

and v is an arbitrary node in G′ with degree (in G′) at least 3. At the end of
Step 1, the graph G′ induced by the remaining uncovered nodes does not have
a node of degree greater than 2. In Step 2 the nodes of G′ (exterior nodes)
are appended to the trees T0, T1, . . . , Tk by creating shortest paths to the leaves

Complexity Results for Black Hole Search in Graphs 11

of these trees. In the final Step 3 all trees T0, T1, . . . , Tk are linked together into
a spanning tree TG of G. Figure 2 shows an example of a final spanning tree,
including the details about the types of the nodes used later in the analysis. The
algorithm can be implemented to run in linear time.

Algorithm 1 Algorithm Generate-Tree (s, G)

1: Step 1 (collecting bushy trees):
2: T0 ←Bushy-Tree (s,G); F ←∅;
3: Let G′ be the subgraph of G induced by the nodes of G not in T0;
4: while there exists a node u in G′ : dG′(u) ≥ 3 do

5: T ←Bushy-Tree (u,G′); F ←F ∪ {T};
6: Remove from G′ the nodes in T and all edges incident to them;
7: end while

8: Let X be the set of nodes still in G′ (exterior nodes);
9: Step 2 (appending exterior nodes):

10: Let Xe be the set of nodes in X adjacent to trees in {T0} ∪ F (type-e nodes);
11: Append each node in Xe to one of the trees Ti adjacent to it;
12: Let Xm = X −Xe (type-m nodes);
13: Append nodes in Xm by creating shortest paths to type-e nodes;
14: Step 3 (linking the trees):
15: TG ←T0;
16: while F 6= ∅ do

17: Find an edge (u, v) such that u ∈ TG and v ∈ T ∈ F ;
18: Add (u, v) and T to TG; F ←F − {T};
19: end while

The set X of exterior nodes can then be partitioned into the nodes adjacent
to a leaf of some Ti (type-e nodes) and the nodes not adjacent to any node of Ti

(type-m nodes). Note that we use two classifications of the nodes of G. The first
one partitions the nodes into three types 1, 3 and 4, and the second one which
assigns types e and m to some of the nodes. We will need to introduce further
types and sub-types to the second classification, We will need also to refer to
intersections of types from these two classifications; for example, a type-4e node
is a node which is both a type-4 and a type-e node.

Lemma 9. Each type-m node has degree at most 2 in G. For each maximal
path 〈v0, v1, . . . , vh〉 of type-m nodes in G, one of the two end nodes is adjacent
to a type-e node, while the other has degree 1 or is adjacent to a type-e node.

On the basis of the above lemma, the computation done during Step 2 can
be viewed in the following way. Append first each type-e node to a leaf of a tree
Ti, and then consider the maximal paths of type-m nodes. Append the length-0
paths and the paths with one end node having degree 1 (in G) to the adjacent
type-e nodes. For each remaining path, remove its middle edge, breaking the
possible tie arbitrarily, and append the resulting two paths to the adjacent type-
e nodes (after the removal of the middle edges, each path is adjacent to exactly

12 Ralf Klasing, Euripides Markou, Tomasz Radzik, and Fabiano Sarracco

T0

3T

T2

1T

1

4e

1

33

4mm

3

4e
331

4e
3

1

33

3

131

13

s

4mm

1

1

33

1

4me
3

1

3

4l

4l

4l

4mm

4mm

4l

4l

3 1 1

1 1 1

4e

4mm

4me

4mm
4me

3

11

1

1

4e

Fig. 2. An example of a final spanning tree computed by algorithm Generate-Tree.
Types of nodes 1, 3 or 4, and further subdivision of type-4 nodes are indicated.

one type-e node). We sub-divide the type-m nodes into the type-me nodes which
are adjacent to type-e nodes and the remaining type-mm nodes. During Step 2
paths composed of one type-e node, possibly one type-me node and possibly one
or more type-mm nodes are appended to leaves of the trees Ti. During merging
of tree in Step 3, at most 2 nodes of each appended tree may become type-4
nodes. We call them type-4l nodes.

4.3 Approximation Ratio of the STE Algorithm

Lemma 8 implies that the cost of the exploration scheme computed by the STE
algorithm for graph G is

tALG ≤ x1 + 3x3 + 4x4 + 1, (1)

where xi is the number of type-i nodes in tree TG. Since the cost of the optimal
exploration scheme is at least tOPT ≥ n−1 = x1+x3+x4, the number x4 should
be closely analysed. We provide first a bound on x4e + x4me + x4l (Lemma 10).
We then use the number x4mm to strengthen the lower bound on the cost of the
optimal exploration scheme: no exploration scheme can keep exploring the type-
4mm nodes at the average rate of one node per one step (Lemma 11). Lemmas 10
and 11 and the bound (1) imply our final result stated in Theorem 1.

Complexity Results for Black Hole Search in Graphs 13

Lemma 10. For any tree TG generated by algorithm Generate-Tree,

x4e + x4me + x4l ≤ 5x1 + x3 + x1mm − 10. (2)

Proof. Consider the maximal paths of type-4 nodes in TG, distinguishing two
kinds of such paths. In an leaf path the last node (the node furthest from the
root) has only one child (which must be a leaf); while in a mid-tree path the
last node has at least two children. Each leaf path contains at most one type-4e
node, at most one type-4me node and possibly one or more type-4mm nodes.
Moreover, if a type-4me node is present in such a path, then the leaf attached
to the last node of the path is a type-1mm node. Each mid-tree path contains at
most two type-4e nodes, at most two type-4me nodes, at most two type-4l nodes
and any number of type-mm nodes. Hence, denoting by z′ and z′′ the number
of the leaf paths and the number of the mid-tree paths, respectively, we have
x4e ≤ z′ + 2z′′, x4em ≤ x1mm + 2z′′, and x4l ≤ 2z′′, so

x4e + x4me + x4l ≤ 6z′′ + z′ + x1mm. (3)

The last node of a mid-tree path must be a branching node in TG, so z′′ ≤ x1−2.
On the other hand, since different maximal path of type-4 nodes are attached in
TG to a different type-3 nodes, we have z′′ ≤ x3 − z′. Thus

6z′′ ≤ 5(x1 − 2) + x3 − z′, (4)

and Inequalities (3) and (4) give immediately (2). ⊓⊔

Lemma 11. The minimum cost of an exploration scheme for graph G is

tOPT ≥ n +
1

2
xmm = x1 + x3 + x4 +

1

2
(x1mm + x4mm). (5)

Theorem 1. For any graph G, the ratio of the cost tALG of the exploration
scheme computed for G by the STE algorithm to the cost tOPT of an optimal
exploration scheme for G is at most 7/2.

5 Limitations of BHS Based on Spanning Trees

The approximation algorithm for the BHS problem in arbitrary graphs which we
presented in the previous section was based on the following two-part approach.
Find first a suitable spanning tree T of the graph to explore, and then explore T
using a good BHS for trees. We show now that no graph exploration using this
technique can guarantee a better approximation ratio than 3/2.

Let Gc = (V, E) be an odd-length cycle with V = {v1, v2, . . . , vc} and E =
{(v1, v2), . . . , (vc−1, vc), (vc, v1)}. A new graph G′

c is obtained from Gc using the
construction for the NP-hardness proof given in Section 3, taking edge (vc, v1) as
(x, y), with the following modification. The construction from Section 3 would
add two shortcut edges for each node v ∈ V ∪ {s}, but we add only one. If we
trace the cycle 〈s, v1, v2, . . . , vc〉 in a planar embedding of G′

c, then the shortcut

14 Ralf Klasing, Euripides Markou, Tomasz Radzik, and Fabiano Sarracco

edges alternate between both sides of the cycle. Graph G′
7 is shown in Figure 3.

Graph G′
c has 4c + 3 nodes and, using an argument as in the proof of Lemma 4,

one can show that the cost of an optimal exploration scheme for G′
c is 4c + 2.

Consider the spanning tree of G′
c as shown in Figure 3. In the notation from

Section 4.1, this tree has x3 = c−1 type-3 nodes (v1, v2, . . . , vc−1) and x1 = 3c+3
type-1 nodes. Lemma 7 implies that the cost of the exploration scheme computed
for this tree by algorithm Search-Tree from Section 4.1 is x1+3x3 = 6c. We show
now that this is essentially the best what an exploration scheme for a spanning
tree of G′

c can do. Lemma 12, proven in [2], and Lemma 13 imply that the cost
of any exploration scheme for any spanning tree of G′

c is at least 6c − 2, so at
least 3/2 − O(1/c) times higher than the optimal cost of exploring G′

c.

Lemma 12. [2] Let T = (VT , ET , s) be a rooted tree with n+1 nodes. Let xβ and
xγ denote the number of nodes in VT \ {s} with exactly one descendant (type-β
nodes) and with at least two descendants (type-γ nodes), respectively. Then the
cost of any exploration scheme for T is at least n + xβ + 2xγ.

7v

v6

5v

v4

3v

v2

1v

s

Fig. 3. Graph G′
7 and its “good” spanning tree (solid edges).

Lemma 13. For any spanning tree T of G′
c rooted at s, xβ + 2xγ ≥ 2c − 4.

Proof. Each node in V \ {vc} has at least one descendant. Let z be the number
of type-β nodes in V \ {vc}. At least z − 2 shortcut edges must belong to T : for
each type-β node u in V \ {vc} except for at most two such nodes, the shortcut
edge of u must be in T . Thus there are at least z − 2 twin nodes of type β or γ,
so xβ + 2xγ ≥ z + 2(c − 1 − z) + z − 2 = 2c − 4.

Complexity Results for Black Hole Search in Graphs 15

6 Conclusion

We proved that producing an optimal exploration scheme for an arbitrary graph
is NP-hard, thus solving an open problem stated in [2]. We also gave a polynomial
time 7/2-approximation algorithm for the BHS problem, which improves the ratio
of 4 observed in [2]. Finally, we showed that any BHS that explores a graph via
some spanning tree, as our algorithm does, cannot have an approximation ratio
better than 3/2. A natural open problem is to decrease the 7/2 approximation
ratio. It would also be interesting to generalize the model used in Section 2, and
to investigate complexity issues, for the case of k ≥ 3 agents.

References

1. J. Czyzowicz, D. Kowalski, E. Markou, and A. Pelc. Complexity of searching for
a black hole. 2004. manuscript.

2. J. Czyzowicz, D. Kowalski, E. Markou, and A. Pelc. Searching for a black hole in
tree networks. In Proc. of 8th International Conference on Principles of Distributed
Systems (OPODIS 2004), pages 34–35, 2004.

3. S. Dobrev, P. Flocchini, R. Kralovic, G. Prencipe, P. Ruzicka, and N. Santoro.
Black hole search by mobile agents in hypercubes and related networks. In Proc.
of 6th International Conference on Principles of Distributed Systems (OPODIS
2002), pages 169–180, 2002.

4. S. Dobrev, P. Flocchini, G. Prencipe, and N. Santoro. Mobile agents searching for
a black hole in an anonymous ring. In Proc. of 15th International Symposium on
Distributed Computing (DISC 2001), pages 166–179, 2001.

5. S. Dobrev, P. Flocchini, G. Prencipe, and N. Santoro. Searching for a black hole in
arbitrary networks: Optimal mobile agents protocols. In Proc. 21st ACM Sympo-
sium on Principles of Distributed Computing (PODC 2002), pages 153–161, 2002.

6. S. Dobrev, P. Flocchini, G. Prencipe, and N. Santoro. Multiple agents rendezvous
on a ring in spite of a black hole. In Proc. 7th International Conference on Prin-
ciples of Distributed Systems (OPODIS 2003), 2003.

7. M. R. Garey, D. S. Johnson, and R. E. Tarjan. The planar hamiltonian circuit
problem is np-complete. SIAM Journal on Computing, 5(4):704–714, 1976.

8. F. Hohl. Time limited black box security: Protecting mobile agents from malicious
hosts. In Proc. Conf. on Mobile Agent Security, LNCS 1419, pages 92–113, 1998.

9. F. Hohl. A framework to protect mobile agents by using reference states. In Proc.
20th Int. Conf. on Distributed Computing Systems (ICDCS 2000), pages 410–417,
2000.

10. S. Ng and K. Cheung. Protecting mobile agents against malicious hosts by inten-
tion of spreading. In Proc. Int. Conf. on Parallel and Distributed Processing and
Applications (PDPTA’99), pages 725–729, 1999.

11. T. Sander and C.F. Tschudin. Protecting mobile agents against malicious hosts.
In Proc. Conf. on Mobile Agent Security, LNCS 1419, pages 44–60, 1998.

12. K. Schelderup and J. Ines. Mobile agent security – issues and directions. In Proc.
6th Int. Conf. on Intelligence and Services in Networks, LNCS 1597, pages 155–167,
1999.

13. J. Vitek and G. Castagna. Mobile computations and hostile hosts. In D. Tsichritzis,
editor, Mobile Objects, pages 241–261. University of Geneva, 1999.

