
Approximation bounds for Black Hole Search problems?

Ralf Klasing??, Euripides Markou? ? ?, Tomasz Radzik†, Fabiano Sarracco‡

Abstract. A black hole is a highly harmful stationary process residing in a node of a network and

destroying all mobile agents visiting the node without leaving any trace. The Black Hole Search is the

task of locating all black holes in a network, through the exploration of its nodes by a set of mobile

agents. In this paper we consider the problem of designing the fastest Black Hole Search, given the

map of the network, the starting node and a subset of nodes of the network initially known to be

safe. We study the version of this problem that assumes that there is at most one black hole in the

network and there are two agents, which move in synchronized steps. We prove that this problem

is not polynomial-time approximable within any constant factor less than 389
388

(unless P=NP). We

give a 6-approximation algorithm, thus improving on the 9.3-approximation algorithm from [2]. We

also prove APX-hardness for a restricted version of the problem, in which only the starting node is

initially known to be safe.

Keywords: approximation algorithm, black hole search, graph exploration, mobile agent, inapprox-

imability.

? Research supported in part by the European Research Training Network COMBSTRU HPRN-CT-2002-00278

and the European COST Action TIST 293 (GRAAL), the Royal Society Grant ESEP 16244, and the ACI Masses

de données. Part of this work was done while E. Markou, T. Radzik and F. Sarracco were visiting the LaBRI

(Laboratoire Bordelais de Recherche en Informatique) in Bordeaux.

?? LaBRI - Université Bordeaux 1 - CNRS, 351 cours de la Libération, 33405 Talence cedex, France. Email:

Ralf.Klasing@labri.fr

? ? ? School of Computational Engineering & Science, McMaster University, 1280 Main St. West, Hamilton, Ontario

L8S 4K1, Canada. Email: markoue@mcmaster.ca

† Department of Computer Science, King’s College London, London, WC2R 2LS, UK. Email:

Tomasz.Radzik@kcl.ac.uk

‡ DIS - Dipartimento di Informatica e Sistemistica, CTL - Centro di ricerca per il Trasporto e la Logistica, Sapienza

- Università di Roma. Email: Fabiano.Sarracco@dis.uniroma1.it

1

1 Introduction

The Background and the Problem. The problem of protecting mobile agents from malicious

hosts, i.e., nodes of a network which store harmful processes in them, has been widely studied

[8, 9, 11, 12]. Even though various countermeasures have been proposed, the general belief (see

[8, 13]) is that it is very hard (if not virtually impossible) to fully protect mobile agents from

malicious hosts attacks.

We consider here malicious hosts of a particularly harmful nature, called black holes [2–6].

A black hole is a node in a network which contains a stationary process destroying all mobile

agents visiting this node, without leaving any trace on the other nodes of the network. Since

agents cannot prevent being annihilated once they visit a black hole, the only way of protection

against such processes is identifying the hostile nodes and avoiding further visiting them. In

order to locate a black hole, at least one agent must visit it. However, no hint about the presence

of a black hole can be deduced by visiting its neighborhood, and it is also assumed that an agent

visiting a black hole has no way of communicating with other agents before being terminated.

Therefore, it should be clear that it is possible to locate a black hole only by “sacrificing” one

agent and by using another agent to indirectly infer the existence of a black hole. An agent which

is to visit an unknown node can, for instance, have a meeting scheduled with another agent after

such a visit, or write on a white-board in a neighboring node the label of the unknown node that

he is visiting. If the visited node is a black hole, then the destroyed agent will neither turn up at

the node where the meeting was scheduled nor write back to the white-board that the node has

been successfully visited. In both cases, the surviving agents can deduce that the visited node is

a black hole.

In this paper, we investigate the case when there may be at most one black hole in the

network, and the search is performed by exactly two agents, which start from the same node s

and can communicate only when they are in the same node. At least one agent must report back

to s the information on where exactly the black hole is or that there is none. We consider the

problem of designing a black hole search scheme for a given network, a given starting node s,

and a given subset S ⊇ {s} of nodes which are initially known to be safe. The black hole, if

present, may be at any node not in S.

2

The issue of efficient black hole search was extensively studied in [4–6] under the scenario

of totally asynchronous networks, i.e., while every edge traversal by a mobile agent requires

finite time, there is no upper bound on this time. To solve the problem in this setting, the net-

work must be 2-connected. Moreover, in an asynchronous network it is impossible to answer the

question of whether a black hole actually exists, hence it is assumed in [4–6] that there is exactly

one black hole and the task is to locate it. Due to the asynchronous setting, there is no obvious

and interesting measure of the time needed by the agents to find the black hole. Hence, the com-

plexity measure considered is the total number of moves performed by the agents. For arbitrary

networks of n nodes, the authors show that Θ(n log n) moves are necessary and sufficient.

In this paper, we study the problem under the scenario of synchronous networks, previously

considered in [2, 3, 10]. In this scenario there is an upper bound on the time needed by an agent

for traversing any edge. This assumption makes a dramatic change to the problem. The black

hole can be located by two agents in any network and moreover the agents can decide if there

is a black hole or not. To measure the efficiency of a black hole search, it is assumed that each

agent takes exactly one time unit (one synchronized step) to traverse one edge (and to make all

necessary computations associated with this move). Then the cost of a given black hole search

(scheme) is defined as the total number of time units the search takes under the worst-case

location of the black hole in the network, or when it is discovered that the network contains no

black hole.

The running time of an algorithm producing a black hole search scheme should be distin-

guished from the cost (the worst-case time) of the search based on this scheme. Informally, the

former is the time of preparing (planning) the walk, while the latter is the time of walking. Here,

we study the optimization problem of computing a minimum-cost black hole search scheme for

a given network, a given starting node and a given set of nodes initially known to be safe. From

now on, the Black Hole Search problem refers to this optimization problem.

Previous Results. In [2] the authors prove that the Black Hole Search problem is NP-hard, and

show a 9.3-approximation algorithm for it. The restricted case of this problem, when the starting

node is the only node initially known to be safe (S = {s}), is considered in [3, 10]. In [10] the

authors prove that this restricted case is also NP-hard, and give a 33
8 -approximation algorithm.

3

In [3] the problem is studied in tree topologies, and the main results are an exact linear-time

algorithm for some sub-class of trees and a 5/3-approximation algorithm for arbitrary trees. The

existence of an exact polynomial-time algorithm for arbitrary trees is left open.

Our Results. We show that the Black Hole Search problem is not approximable in polynomial

time within a 1 + ε factor for any ε < 1
388 , unless P=NP. Moreover, we give a 6-approximation

algorithm for this problem, i.e., a polynomial-time algorithm which, for any input instance,

produces a black hole search scheme with cost at most 6 times the best cost of a black hole

search scheme for this input. This improves on the 9.3-approximation algorithm shown in [2].

Finally, we prove that the restricted case in which only the starting node is initially known to be

safe is also APX-hard.

2 Model and Terminology

We represent a network as a connected undirected graph G = (V,E), where nodes denote hosts

and edges denote communication links.1 With no loss of generality, we assume that G has no

multiple edges or self-loops.

The two agents, called Agent-1 and Agent-2, start the black hole search from a STARTING

NODE s ∈ V and explore graph G by traversing its edges. Together with the starting node s, a

subset of nodes S which are initially known to be safe is given. Let U = V \ S, and let B ⊆ U

denote the (unknown) location of the black hole, with either B = ∅ or B = {b}. We formalize

the general version of the Black Hole Search problem (set S can be any proper subset of V

including s) in the following way.

(General) Black Hole Search problem (BHS problem)

Instance : a connected undirected graph G = (V,E), a subset of nodes S ⊂ V and a node

s ∈ S.

Solution : a feasible EXPLORATION SCHEME EG,S,s = (X, Y) for (G, S, s), where X =

〈x0, x1, . . . , xT 〉 and Y = 〈y0, y1, . . . , yT 〉 are two equal-length sequences of nodes in G.
1 In the following we will use the terms graph and network, host and node, and link and edge interchangeably,

although we tend to use the term graph to mean an abstract representation of a network.

4

The feasibility of EG,S,s is determined by constraints 1–4 given below. The length of EG,S,s

is defined to be T .

Measure : the cost of the Black Hole Search (BHS) based on EG,S,s (defined below).

Goal : minimization.

When the BHS based on a given exploration scheme EG,S,s is performed in G, Agent-1

follows the path defined by X while Agent-2 follows the path defined by Y. At the end of the

i-th step of the search (at time i), Agent-1 is in node xi while Agent-2 is in node yi. As soon as

an agent deduces the value of B, it “aborts” the exploration and returns to the starting node s by

traversing nodes in V \B.

If X = 〈x0, x1, . . . , xT 〉 and Y = 〈y0, y1, . . . , yT 〉 are two equal-length sequences of nodes

in G, then EG,S,s = (X, Y) is a feasible exploration scheme for the input (G, S, s) (and can be

effectively used as a basis for a BHS in G) if the constraints 1–4 stated below are satisfied.

Constraint 1: x0 = y0 = s, xT = yT .

Constraint 2: for each i = 0, . . . , T − 1, either xi+1 = xi, or (xi, xi+1) ∈ E; and similarly

either yi+1 = yi or (yi, yi+1) ∈ E.

Constraint 3: U ⊆
⋃T

i=0 {xi} ∪
⋃T

i=0 {yi}.

Constraint 1 corresponds to the fact that both agents start from the given starting node s. The

requirement that the sequences X and Y end at the same node provides a convenient simplifi-

cation of the reasoning without loss of generality. Constraint 2 models the fact that during each

step, each agent can either WAIT in the node v where it was at the end of the previous step, or

traverse an edge of the network to move to a node adjacent to v. Constraint 3 assures that each

node in U is visited by at least one agent during the exploration. We need additional definitions

to state Constraint 4.

Given an exploration scheme EG,S,s = (X, Y), for each i = 0, 1, . . . , T , we call the EX-

PLORED TERRITORY at step i the set Si defined in the following way:

Si =

S ∪
⋃i

j=0 {xj} ∪
⋃i

j=0 {yj} , if xi = yi;

Si−1, otherwise.

5

Thus S0 = S by Constraint 1, ST = V by Constraint 1 and Constraint 3, and Sj−1 ⊆ Sj for

each step 1 ≤ j ≤ T . A node v is EXPLORED at step i if v ∈ Si, or UNEXPLORED otherwise.

An unexplored node v may have been already visited by one of the agents, but it will become

explored only the next time the agents meet and communicate; recall that the agents communi-

cate with each other, exchanging their full knowledge, when and only when they meet at a node.

Intuitively, the explored territory is a territory that both agents know is safe. As we will see,

in light of Constraint 4, the definition of explored territory coincides with this intuition. Note

that the explored territory is defined for an exploration scheme EG,S,s, not for the BHS based on

EG,S,s, and does not take into account the possible existence of the black hole. This is taken into

account in the definition of the cost of the BHS based on EG,S,s.

A MEETING STEP (or simply MEETING) is the step 0 and every step 1 ≤ j ≤ T such that

Sj 6= Sj−1. Observe that, in each meeting step j, the agents must be in the same node (xj = yj),

which we call a MEETING POINT. Note that the opposite is not necessarily true, i.e., there can

exist non-meeting steps during which the agents are in the same node. For example, the agents

could be following together a path of already explored nodes to get to a new part of the network.

They would be at the same time in the same nodes, but would not be increasing the explored

territory. The meeting steps are the steps when the agents meet and add at least one new node

to the explored territory. A sequence of steps 〈j + 1, j + 2, . . . , k〉 where steps j and k are two

consecutive meetings is called a PHASE of length k − j. We give now the last constraint on a

feasible exploration scheme.

Constraint 4: for each phase with a sequence of steps 〈j + 1, j + 2, . . . , k〉,

(a) | {xj+1, . . . , xk} \ Sj | ≤ 1 and | {yj+1, . . . , yk} \ Sj | ≤ 1; and

(b) {xj+1, . . . , xk} \ Sj 6= {yj+1, . . . , yk} \ Sj .

Constraint 4(a) means that during each phase, one agent can visit at most one unexplored

node. If it visited two or more unexplored nodes and one of them was a black hole, then the

other, surviving, agent would not know where exactly the black hole is. Constraint 4(b) says that

the same unexplored node cannot be visited by both agents during the same phase, or otherwise

they both may end up in a black hole (see [3] for a more detailed discussion). From now on an

exploration scheme means a feasible exploration scheme.

6

For an exploration scheme EG,S,s = (X, Y) and a subset B of unexplored nodes (with |B| ≤

1), the EXECUTION TIME is defined as the number of time units needed to perform the BHS

based on EG,S,s, in the case that B is the set of black holes. If B = ∅, then the execution time is

equal to the length T of the exploration scheme, plus the shortest path distance from xT (= yT)

to s. In this case the agents must perform the full exploration (spending one time unit per step)

and then get back to the starting node to report that there is no black hole in the network. If

B = {b} ⊆ U , then let j be the first step in EG,S,s such that b ∈ Sj . Observe that j must be a

meeting step and 1 ≤ j ≤ T , since S0 = S and ST = V . The execution time in this case is

equal to j plus the length of the shortest path from xj(= yj) to s not including b. In this case one

agent, say Agent-1, vanishes into the black hole during the phase ending at step j, so it does not

show up to meet Agent-2 at node xj = yj . Since, by Constraint 4(a), Agent-1 has visited only

one unexplored node during the phase (node b), and, by Constraint 4(b), Agent-2 has not visited

that node, the surviving Agent-2 learns the exact location of the black hole and thus it goes back

to s, obviously omitting the black hole.

The COST of the BHS based on an exploration scheme EG,S,s = (X, Y) is denoted by

cost(EG,S,s) and defined as the worst (maximum) execution time of EG,S,s over all possible

values of B (including B = ∅).

We recall from [10] the next two simple observations.

Lemma 1. If step k ≥ 1 is a meeting step for an exploration scheme EG,S,s, then xk = yk ∈

Sk−1.

Proof. Let j be the last meeting step before step k, and hence Sj = Sj+1 = · · · = Sk−1. By

definition xk = yk ∈ Sk. If xk = yk is not in Sk−1, then it is in both {xj+1, . . . , xk} \ Sj and

{yj+1, . . . , yk} \ Sj . In this case, at least one of the conditions of Constraint 4 is violated, since

either the two sets are the same or at least one of the two contains more than one node. ut

Lemma 2. Each phase of an exploration scheme EG,S,s has length at least 2.

Proof. Let us suppose, by contradiction, that there exists in EG,S,s a phase of length 1, and hence

two adjacent meeting steps j and j + 1. The step j + 1 is a meeting if and only if Sj+1) Sj ,

but, by Lemma 1, xj+1 = yj+1 ∈ Sj , and hence Sj+1 = Sj . Therefore there cannot exist in

EG,S,s a phase of length 1. ut

7

Phases of length 2 which expand the explored territory by 2 nodes are of particular interest

to us since they advance the exploration of the network at the fastest possible rate. Any phase

〈j + 1, j + 2〉 of this kind has to have the following structure. Let m be the meeting point at step

j. During step j + 1, Agent-1 visits an unexplored node v1 adjacent to m, while Agent-2 visits

an unexplored node v2 adjacent to m as well, and v1 6= v2. In step j + 2, the agents meet in a

node which has been already explored and is adjacent to both v1 and v2. This node can be either

m, and in this case we denote the phase as b-split(m, v1, v2), or a different node m′ 6= m, and

in this case we denote the phase as a-split(m, v1, v2,m
′).

The following lemma helps to simplify, at least in some cases, the computation of the cost

of the BHS based on a given exploration scheme.

Lemma 3. Let (G, S, s) be an input instance for the BHS problem problem, and let U be the

set of initially unexplored nodes (U = V \ S). The case B = ∅ yields the maximum execution

time for any exploration scheme in (G, S, s) if, by removing any node u ∈ U from G, each node

in V \ {u} either becomes disconnected from s, or maintains its shortest path distance from s.

Proof. Let us consider any exploration scheme EG,S,s and the case B = {b} 6= ∅ (for any b).

By hypothesis, we can remove b from G and have a partition of the nodes in two subsets: nodes

becoming disconnected from s, and nodes maintaining the distance from s. The meeting point m

at the end of the phase of EG,S,s during which b is visited for the first time must be in this latter

subset. Therefore, the path from m to s defined in EG,S,s for the case B = ∅ cannot be shorter

than the shortest path from m to s the surviving agent can follow in the case B = {b}. ut

Corollary 1. Let (G, S, s) be an input instance for the BHS problem. If G is a tree rooted at s,

then the case B = ∅ yields the maximum execution time for any exploration scheme in (G, S, s).

Proof. This assertion straightforwardly follows from the property that in any tree there is always

a unique path from any node to the root. ut

Note that in our model we do not account for the time of computing the shortest path that the

surviving agents are to follow to return to s at the end of the exploration. We assume that either

this time is negligible or the whole set of required shortest paths is pre-computed and stored in

the agents’ memory.

8

3 Approximation Lower Bound for the General BHS Problem

In this section, we provide an explicit lower bound on the approximability of the General Black

Hole Search problem by showing an approximation-preserving reduction from a particular sub-

case of the Traveling Salesman Problem, presented in [7]. For a constant integer M , TSP(1,M)

is defined in the following way.

TSP(1,M)

Instance : a pair (G, d), where G = (V,E) is a complete graph (with V = {v1, . . . , vn})

and d : V 2 → {0, 1, . . . ,M} is a distance function such that d(v, v) = 0, for each v ∈

V , and d(v, u) is a positive integer between 1 and M (where M is a constant), for each

u, v ∈ V, u 6= v. Function d is symmetric (i.e., d(u, v) = d(v, u)) and satisfies the triangle

inequality (i.e., d(i, j) + d(j, k) ≥ d(i, k), ∀i, j, k ∈ V). For an edge (v, u) in G, we refer

to number d(v, u) as the length of this edge.

Solution : a tour τ of G, i.e., a permutation τ = 〈vπ(1), vπ(2), . . . , vπ(n)〉 of the nodes in V . We

assume that π(n + 1) = π(1) = 1.

Measure : the length (or cost) of the tour, i.e.,

cost(τ) =
n∑

i=1

d(vπ(i), vπ(i+1)).

Goal : minimization.

Lemma 4. [7] It is NP-hard to approximate TSP(1,8) within 1 + ε for any ε < 1
388 .

Our approach to prove the APX-hardness of the BHS problem is the following. We first

provide a reduction from instances (G, d) of TSP(1,M) to instances (G′, S, s) of the BHS

problem. Given a solution τ for an instance (G, d) of the first problem, we construct a so-

lution Eτ
G′,S,s for the corresponding instance (G′, S, s) of the BHS problem. We show that

cost(Eτ
G′,S,s) = 2cost(τ) (Lemma 7). Then, by introducing the concept of regular exploration

schemes, we show that given any exploration scheme EG′,S,s, we can find a tour τ in G such

that cost(Eτ
G′,S,s) ≤ cost(EG′,S,s) (Lemma 11 and Lemma 12). Finally, we show that if, for any

instance of the BHS problem constructed by reduction from an instance of TSP(1,M), we can

9

approximate the optimal solution within a (1 + ε) factor, then we can approximate the optimal

solution of the corresponding instance of TSP(1,M) within the same factor (Lemma 13).

Reduction from instances (G, d) of TSP(1,M) to instances (G′, S, s) of the BHS problem.

Let (G, d) be an instance of TSP(1,M). We define the graph G′ = (V ′, E′), the set S ⊂ V ′,

and the starting node s, in the following way. Recall that V = {v1, v2, . . . , vn}. We begin the

construction with V ′ = {v1}, S = ∅ and define s = v1 as the starting point of the BHS. For

each node vi (2 ≤ i ≤ n) in V , we add to V ′ a pair of nodes v′i, v
′′
i . We refer to node v1 as the

ISLAND I1, and to each pair of nodes v′j , v′′j (with j = 2, . . . , n) as the ISLAND Ij . For each edge

(vi, vj) in E of length d(vi, vj), we add to G′ a path of 2 · d(vi, vj) − 1 new nodes, and edges

connecting one endpoint of this path to nodes v′i and v′′i (or v1, if i = 1) and the other to nodes

v′j and v′′j (or v1 if j = 1). We denote such a path connecting island Ii with island Ij as BRIDGE

i ↔ j. We add all the nodes of the bridge to S. We call as bi,j and as bj,i the endpoints of bridge

i ↔ j adjacent respectively to island Ii and island Ij (note that if d(vi, vj) = 1, then bi,j ≡ bj,i).

Observe that each bridge is composed of at least one (safe) node, and that |V ′ \ S| = 2(n− 1).

An example of this reduction is presented in Figure 1.

Lemma 5. The distance in G′ between any node of island Ii and any node of island Ij (where

i 6= j and i, j = 1, . . . , n) is equal to 2 · d(vi, vj).

Proof. By construction, bridge i ↔ j is composed of 2 · d(vi, vj) − 1 nodes. Hence the length

of the path from Ii to Ij which uses such a bridge is 2 · d(vi, vj). Suppose, by contradiction, that

there exists a path in G′ from Ii to Ij of length less than 2 · d(vi, vj). This path starts from Ii,

visits some other islands (say 〈Ik1 , . . . , Ikk
〉) and then ends in Ij . The length of such a path is

2 [d(vi, vk1) + d(vk1 , vk2) + · · ·+ d(vkk
, vj)]. This would mean that d(vi, vk1) + d(vk1 , vk2) +

· · ·+ d(vkk
, vj) < d(vi, vj). By the triangle inequality on the distances in G, this is a contradic-

tion. ut

The following lemma gives a useful property of the constructed instance (G′, S, s) of the

BHS problem.

Lemma 6. For any exploration scheme for the constructed instance (G′, S, s) of the BHS prob-

lem, the case B = ∅ yields the maximum execution time.

10

v1

v2 v3

v4

1 2

3

32

3

v1

v2́ v´´2 v´´3v3́

v4́ v´´4

≡ s

a) b)

b2,3 b3,2

Fig. 1. An example of the reduction from an instance (G, d) of TSP(1,M) (in a)) to an instance

(G′, S, s) of BHS problem (in b)). The nodes in S are filled with gray color.

Proof. Let v′i be any node in U . By removing v′i from G′, no node becomes disconnected from

s. Moreover, the node v′′i (the other unexplored node in the same island) is at the same distance

as v′i from s, and has exactly the same set of neighbors as v′i. Therefore, each node in G′ which

has v′i in its shortest path to s, can replace v′i with v′′i in the path and remain at the same distance

from s. By Lemma 3 the assertion is proved. ut

Having a mapping from the instances of TSP(1,M) to instances of the BHS problem, we

define now a mapping from the solutions for an instance of the TSP(1,M) problem to solutions

of the corresponding instance of the BHS problem. Given an instance (G, d) of TSP(1,M), a

corresponding instance (G′, S, s) of the BHS problem, and a tour τ in G, we define an explo-

ration scheme on G′ which explores the islands in G′ in the order defined by τ . In the following

definition we introduce a new term: walk. By walk(b) we mean that both agents, which are sup-

posed to be currently in the same node w, move to b by following a shortest safe path from w to

b. Observe that such a walk is not a complete phase (no new nodes are explored), but we use it

as the initial part of a phase.

11

Let τ = 〈vπ(1), vπ(2), . . . , vπ(n)〉 be a tour on G of length l. Recall that we assume π(n+1) =

π(1) = 1, and that node bi,j is the node adjacent to Ii on the bridge i ↔ j. A τ -BASED

EXPLORATION SCHEME Eτ
G′,S,s on G′ consists of the following sequence of steps:

1. walk(b1,π(2));

2. for each i = 2, . . . , n:

(a) walk(bπ(i),π(i−1));

(b) a-split(bπ(i),π(i−1), v
′
π(i), v

′′
π(i), bπ(i),π(i+1)).

In other words, the two agents walk together along the bridges, then they separate to visit the

two nodes of each unexplored island, and finally meet again on the first node of the next bridge.

Given the tour τ in G, the τ -based exploration scheme Eτ
G′,S,s can be obviously constructed in

linear time. The following lemma gives the cost of the BHS based on Eτ
G′,S,s.

Lemma 7. Given a tour τ = 〈vπ(1), vπ(2), . . . , vπ(n)〉 on G of length l, the τ -based exploration

scheme Eτ
G′,S,s satisfies cost(Eτ

G′,S,s) = 2 · l.

Proof. By Lemma 6, we can compute cost(Eτ
G′,S,s) as the execution time of Eτ

G′,S,s in the case

B = ∅. The walk in (1) requires 1 step. For the i-th iteration in (2) (i = 2, . . . , n):

– the walk in (2.a) requires 2 · d(vπ(i−1), vπ(i))− 2 steps;

– the split defined in (2.b) requires 2 steps.

The exploration scheme Eτ
G′,S,s ends in bπ(n),1, and hence the agents have to get back to s. By

Lemma 5, the distance from bπ(n),1 to s is 2 · d(vπ(n), v1)− 1, therefore:

cost(Eτ
G′,S,s) = 1 + 2

n∑
i=2

d(vπ(i−1), vπ(i)) + 2 · d(vπ(n), v1)− 1 = 2 · l.

ut

Corollary 2. Let (G, d) be an instance of the TSP(1,M) problem, and let (G′, S, s) be the

corresponding instance of the BHS problem. Let τ∗ be an optimal solution for (G, d) and let

E∗G′,S,s be an optimal solution for (G′, S, s). Then cost(E∗G′,S,s) ≤ 2 · cost(τ∗).

Proof. Lemma 7 implies

2cost(τ∗) = cost(Eτ∗
G′,S,s) ≥ cost(E∗G′,S,s).

ut

12

In what follows, we show a method to modify an exploration scheme without altering its

properties (i.e., feasibility, length, sequence of explored territories and the cost of the BHS based

on it). We then define a notion of equivalence between exploration schemes which is based on

such an operation.

Definition 1. Let EG,S,s = (X, Y) be an exploration scheme for (G, S, s), and let φ = (Xφ, Yφ)

be a phase in EG,S,s. Let E ′G,S,s be the exploration scheme obtained from EG,S,s by swapping the

paths of the two agents in phase φ, i.e., phase φ is replaced by phase φ′ = (Yφ, Xφ). We call

this operation a PHASE-SWAP. Two exploration schemes are EQUIVALENT if and only if one is

obtained from the other by applying a finite sequence of phase-swaps.

The following lemma is a direct consequence of Definition 1.

Lemma 8. Let EG,S,s = (X, Y) be an exploration scheme for (G, S, s). Let E ′G,S,s be the explo-

ration scheme obtained from EG,S,s by applying a phase-swap on EG,S,s. Then, the exploration

scheme E ′G,S,s is feasible, has exactly the same meeting points, the same sequence of explored

territories and the same length as EG,S,s. Moreover, cost(E ′G,S,s) = cost(EG,S,s).

Corollary 3. Two equivalent exploration schemes have exactly the same meeting points, the

same sequence of explored territories and the same length. Moreover the cost of the BHS based

on them is the same.

We now turn back our focus to instances (G′, S, s) constructed by reduction from instances

(G, d). We give a classification of each phase of any exploration scheme in G′. A phase φ is a:

2s-phase : if the two nodes of the same island are explored during φ;

2d-phase : if two nodes in two distinct islands are explored during φ;

1-phase : if only one node (of one island) is explored during φ.

Definition 2. Given an exploration scheme EG′,S,s, we define the PHASE GRAPH of EG′,S,s as

the following directed multigraph P (EG′,S,s). The graph P (EG′,S,s) has the nodes v2, . . . , vn

corresponding to the islands I2, . . . , In in G′, plus one additional node which we call x. The

following edges are added to P (EG′,S,s):

13

– a directed edge 〈vi, x〉 is added for each node in island Ii which is explored during a 1-phase

by Agent-1;

– a directed edge 〈x, vi〉 is added for each node in island Ii which is explored during a 1-phase

by Agent-2;

– a directed edge 〈vi, vj〉 is added for each 2d-phase exploring a node of island Ii with Agent-1

and a node of island Ij with Agent-2;

– a directed self-loop 〈vi, vi〉 is added if the nodes of island Ii are explored by a 2s-phase.

Lemma 9. Given any exploration scheme EG′,S,s, each node of the phase graph P (EG′,S,s)

other than node x has degree (the in-degree plus the out-degree) equal to 2.

Proof. It follows from Definition 2 that, for any node vi in P (EG′,S,s), there is an outgoing edge

for each node in Ii of G′ which is explored by Agent-1, and there is an incoming edge for each

node in Ii of G′ which is explored by Agent-2. Since each island Ii (i = 2, . . . , n) has two

unexplored nodes, the statement follows. ut

Thus, for the graph P (EG′,S,s), all edges of the underlying undirected multigraph form edge-

disjoint simple cycles. Now, we give a new characterization of an exploration scheme in G′.

Definition 3. An exploration scheme EG′,S,s is REGULAR if and only if each agent explores

exactly one node of each island Ij , with j = 2, . . . , n.

Notice that any τ -based exploration scheme is regular; we can observe that each node in P (Eτ
G′,S,s)

is an isolated node (the only adjacent edge is a self-loop). Indeed, we can prove a tighter relation

between regular exploration schemes and their corresponding phase graph.

Lemma 10. An exploration scheme EG′,S,s is regular if and only if, in the corresponding phase

graph P (EG′,S,s), for each node vi, indeg(vi) = 1 and outdeg(vi) = 1.

Proof. By Lemma 9, any node vi in P (EG′,S,s) has degree 2. Hence, three cases may occur:

1. indeg(vi) = 1 and outdeg(vi) = 1: in this case one node of island Ii is explored by Agent-1

(the outgoing edge) and the other one is explored by Agent-2 (the incoming edge). Therefore,

the island is explored in the regular way.

14

2. indeg(vi) = 0 and outdeg(vi) = 2: in this case both nodes of Ii are explored by Agent-1;

the island is not explored in the regular way.

3. indeg(vi) = 2 and outdeg(vi) = 0: in this case both nodes of Ii are explored by Agent-2;

the island is not explored in the regular way.

ut

Lemma 11. For any exploration scheme EG′,S,s, there is an equivalent regular one that can be

found in linear time.

Proof. It suffices to prove that we can find in linear time a finite sequence of phase-swaps in

EG′,S,s, which transforms EG′,S,s into a regular exploration scheme. By Lemma 10, this means

transforming P (EG′,S,s) into a graph where, for each node vi, indeg(vi) = 1 and outdeg(vi) =

1. We can observe that each phase-swap in EG′,S,s changes the orientation of the corresponding

edge in P (EG′,S,s). For each (undirected) cycle in P (EG′,S,s), we change the orientation of

some edges to obtain a directed cycle, and thus make regular the graph P (EG′,S,s), and the

corresponding exploration scheme. ut

Lemma 12. Given an exploration scheme EG′,S,s, we can find in linear time a tour τ on (G, d)

such that, for the τ -based exploration scheme Eτ
G′,S,s, cost(EG′,S,s) ≥ cost(Eτ

G′,S,s).

Proof. By Corollary 3 and Lemma 11, we can assume without loss of generality that EG′,S,s is

a regular exploration scheme. By regularity, Agent-1 explores a node of each island in G′. Let

IX = 〈Iπ(2), . . . , Iπ(n)〉 be the sequence of the islands in G′ in the order they are explored by

Agent-1. Let τ be the tour in G corresponding to IX (i.e., τ = 〈v1, vπ(2), . . . , vπ(n)〉), and let

l = cost(τ). We show that the τ -based exploration scheme Eτ
G′,S,s is such that cost(EG′,S,s) ≥

cost(Eτ
G′,S,s). Consider the BHS based on EG′,S,s in the case when B = ∅. Agent-1 starts from

s, visits islands in IX and then returns to s. By Lemma 5, the length of this tour is at least

2 ·

(
d(v1, vπ(2)) +

n−1∑
i=2

d(vπ(i), vπ(i+1)) + d(vπ(n), v1)

)
= 2 · cost(τ) = 2 · l .

(The path followed by Agent-1 may actually be longer than 2l if the agent waits in a node

or visits the same node more than once.) Thus, cost(EG′,S,s) is at least 2 · l. By Lemma 7,

cost(Eτ
G′,S,s) = 2 · l. Therefore, cost(EG′,S,s) ≥ cost(Eτ

G′,S,s). ut

15

A straightforward corollary of Lemma 12 is that, for any optimal exploration scheme, there

exists a corresponding tour-based exploration scheme having the same cost.

Lemma 13. Let (G, d) be an instance of the TSP(1,M) problem, and let (G′, S, s) be the cor-

responding instance of the BHS problem. Moreover, let τ∗ be an optimal tour in G, and let

E∗G′,S,s be an optimal exploration scheme for (G′, S, s). Let ε > 0. If one can find in polynomial

time an exploration scheme EG′,S,s such that cost(EG′,S,s) ≤ cost(E∗G′,S,s)(1 + ε), then one can

find in polynomial time a tour τ in G such that cost(τ) ≤ cost(τ∗)(1 + ε).

Proof. Suppose that, given the instance (G′, S, s), we can construct in polynomial time an ex-

ploration scheme EG′,S,s such that its cost is at most 1+ε times the cost of an optimal exploration

scheme. By Lemma 12, we can find a tour τ in G such that for the exploration scheme Eτ
G′,S,s,

cost(Eτ
G′,S,s) ≤ cost(EG′,S,s) ≤ cost(E∗G′,S,s)(1 + ε). Therefore:

2cost(τ) = cost(Eτ
G′,S,s) [by Lemma 7]

≤ cost(E∗G′,S,s)(1 + ε)

≤ 2cost(τ∗)(1 + ε) [by Corollary 2] .

Hence, cost(τ) ≤ cost(τ∗)(1 + ε) . ut

The main theorem immediately follows from Lemma 4 and Lemma 13.

Theorem 1. The BHS problem is not approximable in polynomial time within a factor of 1+ ε

for any ε < 1
388 , unless P=NP.

4 The Restricted BHS Problem is APX-hard

In this section, we consider the restricted version of the BHS problem in which S = {s}, i.e., the

starting point is the only node initially known to be safe (we denote this problem as the rBHS

problem). We show that the BHS problem with this restriction remains APX-hard. Note that the

input of the rBHS problem is fully specified by providing a graph G and the starting node s. In

this section, we will hence use the simpler notation EG,s to refer to an exploration scheme and

(G, s) to refer to an instance of the rBHS problem. We will prove APX-hardness of the rBHS

16

problem by showing a reduction from TSP(1,2) which preserves the non-approximability. We

first recall Lemma 6.3 from [1]:

Lemma 14. [1] Assume we are given an instance of TSP(1,2) on the n-node complete graph

G, in the form of the subgraph G of G containing the edges of weight 1. Assume that G has max

degree 3. Assume that we know that its minimum cost TSP tour is either of cost n or at least

(1 + ε0)n, for some fixed ε0. Then there exists such a constant ε0 for which it is NP-hard to

decide which of the two cases holds. The claim holds for ε0 = 1
786 . If G is cubic then the claim

holds for ε0 = 1
1290 .

With a small abuse of notation we define the cost of a tour in G as the cost of the correspond-

ing TSP tour in the complete graph G. We show a polynomial-time reduction algorithm A from

TSP(1,2) to the rBHS problem, which takes as input an instance G of TSP(1,2), computes an

instance (G′, s) of the rBHS problem, and has the following property.

Lemma 15. Let 0 < ε < 4
7ε0, let G be an n-node cubic graph (an instance of TSP(1,2)),

and let (G′, s) be the corresponding instance of the rBHS problem computed by the reduction

algorithm A. Then the following two conditions hold.

1. If the optimal cost of a tour in G is equal to n, then the optimal cost of an exploration scheme

for (G′, s) is at most 7
2n + 1.

2. There exists n0 = n0(ε0, ε) such that for n ≥ n0, if the optimal cost of a tour in G is at

least n(1 + ε0), then the optimal cost of an exploration scheme for (G′, s) is greater than(
7
2n + 1

)
(1 + ε).

This lemma implies that for 0 < ε < 4
7ε0 and n ≥ n0, if we have an n-node cubic graph

G and we know that the optimal cost of a tour in G is either equal to n or at least n(1 + ε0),

then we can decide which of these two cases happens, if we have a (1+ ε)-approximation of the

optimal cost of an exploration scheme for (G′, s). Thus, Lemmas 14 and 15 imply the following

theorem.

Theorem 2. It is NP-hard to approximate the rBHS problem within a factor 1 + ε for any

ε < 1
2258 .

17

Description of the reduction algorithm A. Let an n-node graph G = (V,E) be the input

instance of TSP(1,2). The construction of the instance (G′, s) of the rBHS problem is similar

to the construction presented in Section 3. The main differences are that here we do not add

bridges corresponding to edges of weight 2 and that all nodes but the starting node s are initially

unexplored. More precisely, the construction of (G′, s) proceeds as follows. We add node v1 to

G′ and make it the starting node (s ≡ v1). For each node vi in G, 2 ≤ i ≤ n, we add in G′ a pair

of unexplored nodes v′i, v
′′
i (as before, we denote this pair as island Ii). For each edge (vi, vj) in

G, we put in G′ an unexplored node bi,j (bridge node), connected to v′i, v
′′
i (if i > 1), to v′j , v

′′
j

(if j > 1) and to s. If the number of bridge nodes (that is, the number of edges in G) is odd,

then we add another unexplored node bs adjacent to s (to ensure that s is adjacent to an even

number of unexplored nodes). Note that s is adjacent to all bridge nodes and is not adjacent to

any “island” nodes. Note also that the obtained graph G′ is bipartite with nodes v1 and v′i and

v′′i , 2 ≤ i ≤ n, on one side of the partition and nodes bi,j and node bs (if it exists) on the other

side.

An example of this reduction is presented in Figure 2.

Proof of Lemma 15. Let G be an n-node cubic graph. Since G has m = 3
2n edges, the total

number of nodes in G′ is 7
2n− 1+ odd(m), and all of them but one are initially unexplored. For

an integer x, odd(x) is equal to 1, if x is odd, and to 0 otherwise. As in Section 3, we define for

a tour τ = 〈v1, vπ(2), . . . , vπ(n)〉 in G, the exploration scheme Eτ
G′,s for (G′, s), which explores

“two-by-two” the nodes of each island in the order 〈Iπ(2), . . . , Iπ(n)〉. Here, however, the scheme

first explores the bridge nodes.

More formally, the scheme Eτ
G′,s has the following sequence of steps.

1. While there are two unexplored nodes b′, b′′ adjacent to s: b-split(s, b′, b′′).

2. For each i = 2, . . . , n:

(a) walk(b′), where b′ is either the bridge node bπ(i−1),π(i), if nodes vπ(i−1) and vπ(i) are

adjacent in G, or any bridge node adjacent to Iπ(i) otherwise.

(b) a-split(b′, v′π(i), v
′′
π(i), b

′′), where b′′ is either the bridge node bπ(i),π(i+1), if i < n and

nodes vπ(i) and vπ(i+1) are adjacent in G, or any bridge node adjacent to Iπ(i) otherwise.

18

v1

v3 v2

v5v4

v6

s≡v1

v2́
v´´2

v5́
v´´5

v6́v´´6

v4́
v´´4

v3́
v´´3

b4,6 b5,6

b1,6

b3,4 b2,5

b2,4b3,5
bs

a) b)

b1,2b1,3

Fig. 2. An example of the reduction A. from an instance G of TSP(1,2) (in a)) to an instance

(G′, s) of rBHS problem (in b)). Observe that the only explored node is s (filled with gray

color), and that, since the number of edges in G is odd, an unexplored node bs is added.

19

Note that the first walk operation, for i = 2, has length 1. For each 3 ≤ i ≤ n, the walk

operation has length either 0, if nodes vπ(i−1), vπ(i) are adjacent in G, or 2, if nodes vπ(i−1), vπ(i)

are not adjacent in G. Therefore, if the tour τ has cost n + d (that is, contains d edges of weight

2), then the exploration scheme Eτ
G′,s has length at most:

3
2
n + odd(m) + 1 + 2d + 2(n− 1) ≤ 7

2
n + 2d.

The execution time for the case B = ∅ is at most 7
2n+2d+1, since Eτ

G′,s ends in a bridge node,

which is adjacent to s. This is also an upper bound on the cost of the BHS based on Eτ
G′,s, since

Lemma 3 holds for (G′, s). If the cost of tour τ is n, then d = 0 and the cost of Eτ
G′,s is at most

7
2n + 1, so the first part of Lemma 15 holds.

To prove the second part of Lemma 15, we consider an arbitrary exploration scheme EG′,s,

and show that if the cost of this scheme is at most (7
2n + 1)(1 + ε), then there is a tour in G of

length less than n(1+ε0). By using a similar approach as the one described in Section 3, we can

find, through a sequence of phase-swaps, a regular exploration scheme E ′G′,s, equivalent to EG′,s,

where each agent explores exactly one node of each island Ij for j = 2, . . . , n, and cost(E ′G′,s) =

cost(EG′,s). We assume by symmetry that scheme E ′G′,s is such that Agent-1 explores nodes v′j ,

j = 2, . . . , n, and that 〈v′π(2), . . . , v
′
π(n)〉 is the order in which Agent-1 explores these nodes.

We consider the tour τ = 〈v1, vπ(2), . . . , vπ(n)〉 in G. We further assume, also by symmetry of

the agents, that Agent-1 explores at least half of the bridge nodes. Let qi denote the number of

bridge nodes explored by Agent-1 between the explorations of node v′π(i) and node v′π(i+1), for

i = 2, . . . , n− 1. Let q1 and qn denote the number of bridge nodes explored by Agent-1 before

the exploration of node v′π(2), and after the exploration of node v′π(n), respectively. We have∑n
i=1 qi ≥ dm

2 e. Agent-1 needs at least 2q1 + 1 steps to reach node v′π(2). Then it needs at least

2qi + 2 steps to move from node v′π(i) to node v′π(i+1), for each i = 2, . . . , n− 1. And finally, it

needs 2qn + 1 steps to reach the last meeting point. Thus the length of the exploration scheme

E ′G′,s is at least:

(2q1 + 1) +
n−1∑
i=2

(2qi + 2) + 2qn + 1 ≥ 2
(⌈m

2

⌉)
+ 2n− 2 =

7
2
n + odd(m)− 2. (1)

We will show that for each index i, 2 ≤ i ≤ n − 1, such that (vπ(i), vπ(i+1)) is not an edge in

G, Agent-1 takes in fact at least 2qi + 4 steps to move from node v′π(i) to node v′π(i+1). This will

20

imply that the length of the exploration scheme E ′G′,s is at least

7
2
n + odd(m)− 2 + 2(d− 2) (2)

where d is the number of edges in tour τ which are not in G.

Consider an index i (2 ≤ i ≤ n− 1) such that (vπ(i), vπ(i+1)) is not an edge in G. If qi = 0,

that is, if Agent-1 does not explore any bridge node between the explorations of nodes v′π(i)

and v′π(i+1), then it needs at least 4 steps to move from node v′π(i) to node v′π(i+1) because the

distance between these two nodes is 4.

If qi > 0, then let b1, b2, . . . , bqi be the bridge nodes explored by Agent-1 between the

explorations of nodes v′π(i) and v′π(i+1). Agent-1 visits node v′π(i) (for the first time), then it

goes to a meeting point z (which cannot be b1), and then to node b1. This takes at least 3 steps

because the length of a path from v′π(i) to b1 containing at least one intermediate node (node z)

is at least 3 as nodes v′π(i) and b1 are on the opposite sides of the bipartite graph G′. Similarly,

Agent-1 needs at least 3 steps to move from node bqi to node v′π(i+1). To move from node bj to

node bj+1, for j = 1, . . . , qi − 1, Agent-1 needs at least 2 steps. Thus Agent-1 needs at least

3 + 2(qi − 1) + 3 = 2qi + 4 steps to reach node v′π(i+1) from the first visit to node v′π(i).

The bound given by (2) on the length of the exploration scheme E ′G′,s implies that

cost(E ′G′,s) ≥
7
2
n + 2d− 6.

This implies that if cost(E ′G′,s) ≤
(

7
2n + 1

)
(1 + ε), then

d ≤ 7
4
εn +

ε

2
+

7
2
,

and

cost(τ) = n + d

≤ n +
7
4
εn +

ε

2
+

7
2

= n(1 + ε0)− (ε0 −
7
4
ε)n +

ε

2
+

7
2

< n(1 + ε0),

provided that 7
4ε < ε0 and n ≥ n0 = d(ε

2 + 7
2)/(ε0 − 7

4ε)e. ut

21

5 A 6-approximation algorithm for the General BHS Problem

Let G = (V,E) be the network to be explored, with the sets S and U defined as in Section 2.

Let u = |U |. We define the distance graph Ĝ as the complete weighted graph in which the set

of nodes corresponds to the nodes in U ∪ {s} and the weight of edge (vi, vj) is the shortest

path distance from vi to vj in G (considering both safe and unexplored nodes). An example of

Ĝ is presented in Figure 3. Note that weights in Ĝ satisfy the triangle inequality. Let T be a

s s

1 2

2 22 3

34 4

3

v1
v1v2

v3 v4 v3

v2

v4

a) b)

s

v1

v3

v2

v4

c)

s

v1 v2

v3 v4

d)

5 2

7 1,30,4,6,8 0,8,12,14 1,7 2,6

3,5

410

9,11

13

Fig. 3. a) An instance (G, S, s) of the BHS problem. The gray nodes are the nodes in S. b) The

corresponding distance graph Ĝ. c) The ordering in the Euler tour LT of the nodes of Ĝ (the

numbers in italic). d) The LG sequence of the nodes of G. Note that some nodes of G may not

be in LG while some may occur more than once.

minimum spanning tree (MST) of Ĝ rooted at s, and let cost(T) be its cost, i.e., the sum of

the weights of all its edges. Let LT = 〈z0 = s, z1, . . . , z2u = s〉 be an Euler tour of T . Let

LG = 〈w0 = s, w1, w2, . . . , wq = s〉 be the sequence obtained from LT by inserting between

22

each pair of consecutive nodes zi and zi+1, for i = 0, 1, . . . , z2u−1, the inner nodes of a shortest

path in G between zi and zi+1. The length of LG is twice the cost of T .

We now construct the exploration scheme EG,S,s = (X, Y) for G based on the walk LG.

Initially X = Y = 〈s〉. Then, for i = 1, 2, . . . , q, the currently last node in X and Y is wi−1, we

consider node wi in LG, and extend the sequences X and Y in the following way. If node wi is

in S or has already occurred in LG before, then append wi to both X and Y. Otherwise, append

〈wi, wi−1, wi〉 to X and 〈wi−1, wi−1, wi〉 to Y. That is, if wi is a new unexplored node, then

Agent-1 visits wi and goes back to node wi−1, while Agent-2 waits for Agent-1 in node wi−1.

We call such two steps probing. The length of EG,S,s is equal to 2cost(T) + 2u.

Lemma 16. The exploration scheme EG,S,s is feasible and can be constructed in polynomial

time. Moreover, cost(EG,S,s) ≤ 2cost(T) + 2u.

Proof. Constraints 1 and 2 can be easily checked by observing that sequence LG (from which

X and Y are derived) is a concatenation of paths in G, starting from s. All the nodes in U are

in Ĝ, in LT and thus in LG; moreover the insertion of probing phases does not alter the set

of visited nodes, hence the agents visit all the unexplored nodes (Constraint 3). Observe that

the agents always move together along explored nodes except for probing. Thus in each phase

Agent-1 visits exactly one unexplored node, while Agent-2 does not visit any unexplored node.

This implies that Constraint 4 is also satisfied.

If B = ∅, then the agents spend 2u steps on probing and 2cost(T) steps on following the

Euler tour LT . If there is a black hole somewhere in the network, then the agents spend at most

2u steps on probing, and when Agent-2 finds out where the black hole is, it can return to node

s by skipping some parts of the Euler tour LT . Thus the execution time in this case is at most

2cost(T) + 2u. Hence the cost of the exploration scheme EG,S,s is 2cost(T) + 2u.

Graph Ĝ can be constructed by computing all-pairs shortest paths in G; by using the best

known algorithm [14], this operation has cost O(nω log n), where O(nω) is the cost of a matrix

product computation. This is the dominating cost of the whole algorithm, since the computation

of the spanning tree T of Ĝ, as the computation of LT and LG, can be all performed in linear

time. ut

23

Let us consider now an optimal exploration scheme E∗G,S,s = (X∗, Y∗). In computing

cost(E∗G,S,s) we consider, as a lower bound, the execution time of E∗G,S,s in the case B = ∅.

Let L′ = 〈xk, . . . , s〉 be the shortest path in G from the last node xk in X∗ to the starting node,

excluding the endpoints xk and s. Let L′′ = X∗ ◦L′ ◦Y∗ ◦L′ ◦ 〈s〉. The sequence L′′ starts from

s, visits all the nodes in U and ends in s. The length |L′′| of L′′ is at most twice the execution

time of E∗G,S,s in the case B = ∅, since L′′ is the concatenation of the paths the two agents

follow during the exploration in this case; hence 2cost(E∗G,S,s) ≥ |L′′|. Let L∗ be the minimum

(shortest) tour in G starting from s and visiting all the nodes in U , and let |L∗| be its length;

obviously, |L′′| ≥ |L∗|.

Due to its optimality, L∗ has the following structure:

L∗ = 〈s〉 ◦ P (s, u1〉 ◦ P (u1, u2〉 ◦ · · · ◦ P (uu, s〉

where 〈u1, . . . , uu〉 is the sequence of unexplored nodes in the order they are visited for the

first time in L∗, and P (x, y〉 denotes the shortest path from node x (excluded) to node y in G.

Since weights in G satisfy the triangle inequality, the length of L∗ is equal to the length of the

minimum traveling salesman tour in Ĝ, which is, by a well-known relation, at least the cost of

the minimum spanning tree T of Ĝ. Therefore, |L∗| ≥ cost(T), and

cost(E∗G,S,s) ≥
cost(T)

2
. (3)

Moreover, since the agents cannot explore more than two nodes every two steps, the trivial lower

bound still holds:

cost(E∗G,S,s) ≥ u. (4)

We compute the approximation ratio of the algorithm presented in this section, by choosing a

suitable balance for Equations (3) and (4). Therefore:

cost(EG,S,s)
cost(E∗G,S,s)

≤ 2 cost(T) + 2u

2
3

cost(T)
2 + 1

3u
= 6 . (5)

Theorem 3. The BHS problem is approximable within 6.

24

6 Conclusions

We showed that it is NP-hard to approximate within any factor less than 389
388 the problem of

computing the fastest exploration scheme for the BHS with two agents (the BHS problem).

We have also shown that for the restricted version of this problem (the rBHS problem), when

initially only the starting node is known to be safe, approximating within any factor less than
2259
2258 is NP-hard. We have presented a polynomial-time 6-approximation algorithm for the BHS

problem (while a polynomial-time 33
8 -approximation algorithm for the rBHS problem was

previously shown in [10]).

It seems difficult to reduce significantly the gap between the upper and lower bounds on the

approximation ratios for the BHS problem and the rBHS problem. Since our lower bounds are

based on reductions from TSP(1,8) and TSP(1,2), any improvements of the inapproximability

results for those problems will directly lead to improved lower bounds for our problems.

We can show that the analysis of our approximation algorithm for the BHS problem is tight,

i.e., the algorithm does not have a better approximation ratio than 6. However, we believe that

one can find an approximation algorithm for the BHS problem with an approximation ratio

better than 6. This might be achievable by considering the following two cases separately. If an

MST T is such that cost(T)/(2u) is not close to 1, say it is outside the range [1 − δ, 1 + δ]

for some small constant δ, then it can be shown that the ratio of costs given on the left-hand

side of (5) is less than 6− δ. If cost(T)/(2u) is within this range, then, using a similar analysis

as in [10], one might try to show that there is some other tree which gives a better bound for

the ratio of costs in (5) than 6. This approach would however lead most likely only to a small

improvement, while requiring substantial expansion and refinement of technical details.

It would be interesting to investigate how one could model and analyze the more practical

and more general case of multiple black holes search, possibly performed by more than two

agents. It is interesting to observe that the assumption of having at most one black hole in the

network does not make the algorithm presented in Section 5 unsuitable for the general case.

A (single black hole) search can be restarted for each new black hole found, on the network

obtained by removing all the black holes already found and by inserting into S the nodes already

explored. This can be iterated until all the network nodes become explored. Obviously, even if

25

at most two agents simultaneously coexist in the network, the total number of agents needed is

still related to the total number of black holes in the network.

Acknowledgements. The authors wish to thank the anonymous referees for their helpful sug-

gestions.

References

[1] B. Csaba, M. Karpinski, and P. Krysta, Approximability of dense and sparse instances of

minimum 2-connectivity, TSP and path problems, Proc 13th Ann ACM-SIAM Symp Discr

Algorithms (SODA ’02), Philadelphia, PA, USA, 2002, pp. 74–83.

[2] J. Czyzowicz, D. Kowalski, E. Markou, and A. Pelc, Complexity of searching for a black

hole, Fundamenta Informaticae 71 (2006), 229–242.

[3] J. Czyzowicz, D. Kowalski, E. Markou, and A. Pelc, Searching for a black hole in syn-

chronous tree networks, Combin, Probability Comput 16 (2007), 595–619, Preliminary

version under the title “Searching for a Black Hole In Tree Networks” in Proc. 8th Inter-

national Conference on Principles of Distributed Systems (OPODIS 2004), Springer LNCS

vol. 3544, 2004, pp. 67-80.

[4] S. Dobrev, P. Flocchini, R. Kràlovic, G. Prencipe, P. Ruzicka, and N. Santoro, Black hole

search in common interconnection networks, Networks 47 (2006), 61–71, Preliminary ver-

sion under the title “Black Hole Search by Mobile Agents in Hypercubes and Related

Networks” in Proc. 6th Int. Conf. on Principles of Distributed Systems (OPODIS 2002),

2002, pp. 169–180.

[5] S. Dobrev, P. Flocchini, G. Prencipe, and N. Santoro, Searching for a black hole in arbitrary

networks: Optimal mobile agents protocols, Distrib Comput 19 (2006), 1–18, Preliminary

version in Proc. 21st ACM Symposium on Principles of Distributed Computing (PODC

2002), 2002, pp. 153–161.

[6] S. Dobrev, P. Flocchini, G. Prencipe, and N. Santoro, Mobile search for a black hole in

an anonymous ring, Algorithmica 48 (2007), 67–90, Preliminary version in Proc. 15th

Int. Symposium on Distributed Computing (DISC 2001), Springer LNCS vol. 2180, 2001,

pp. 166–179.

26

[7] L. Engebretsen and M. Karpinski, TSP with bounded metrics, J Comput System Sciences

72 (2006), 509–546.

[8] F. Hohl, Time limited black box security: Protecting mobile agents from malicious hosts,

Proc Conference Mobile Agent Security, Vol. 1419 of Lecture Notes in Computer Science,

Springer, 1998, pp. 90–111.

[9] F. Hohl, A framework to protect mobile agents by using reference states, Proc 20th Int

Conference Distrib Comput Syst (ICDCS ’00), 2000, pp. 410–417.

[10] R. Klasing, E. Markou, T. Radzik, and F. Sarracco, Hardness and approximation results for

black hole search in arbitrary graphs, Theoret Comput Sci 384 (2007), 201–221, Prelimi-

nary version in Proc. 12th Int. Colloquium on Structural Information and Communication

Complexity (SIROCCO 2005), Springer LNCS vol. 3499, 2005, pp. 200–215.

[11] S. Ng and K. Cheung, Protecting mobile agents against malicious hosts by intention of

spreading, Proc Int Conference Parallel Distrib Process Appl (PDPTA’99) Vol. II, 1999,

pp. 725–729.

[12] T. Sander and C. Tschudin, Protecting mobile agents against malicious hosts, Proc Con-

ference Mobile Agent Security, Vol. 1419 of Lecture Notes in Computer Science, Springer,

1998, pp. 44–60.

[13] K. Schelderup and J. Ølnes, Mobile agent security – issues and directions, Proc 6th Int

Conference Intelligence Services in Networks, Vol. 1597 of Lecture Notes in Computer

Science, Springer, 1999, pp. 155–167.

[14] R. Seidel, On the all-pairs-shortest-path problem in unweighted undirected graphs, J Com-

put System Sciences 51 (1995), 400–403.

27

	Approximation bounds for Black Hole Search problems
	 Ralf Klasing, Euripides Markou, Tomasz Radzik, Fabiano Sarracco

