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Abstract

Visibility problems deal with placing a minimum number oamtsmit-
ting stations in a region thus covering a maximum number ofroonica-
tion needs. Here we investigate some variants of such prabéeg. i) given
a polygonP with weights on the vertices find at madstconvex subpoly-
gonsGC; of P (possibly overlapping) withv/ (C;) C V(P) so that the weight
of the vertices is a maximum, and ii) given a polygon (pogsiith holes)
andk available vertex (or edge) guards maximize a)lérgth of boundary
guarded, b) théotal costof valuable parts of the boundawatched (or cov-
ered) We give proofs of NP-hardness and also polynomial timerélyos
that approximate the optimum within a constant ratio foraheve problems.
Furthermore we prove (for most of these problems) that tleepat admit
fully polynomial time approximation schemes, unl&s NP.

While investigating the above problems we introducevajghtsor val-
ues on pieces of the polygon’s boundary, b) the useful analigsing concept
of watching a set of points or line segments as opposed to complete&ly
seeingor covering it, and c¢) a way to discretize the boundary of thiggon
by subdividing it intoO(n?) pieces of thé=V S= finest visibility segmenta-
tion, which is the finest relevant segmentation w.r.t. any geonoatconsid-
eration.

Keywords:Wireless Communication, Direct Point to Point Communica-
tion, Point to Station Communication, Approximation Algbms, Visibility
Problems, Computational Geometry, Visibility Graphs.

1 Introduction

The development of wireless communication technology (fagihones, etc)
created a number of research problems: minimization of timeber of transmit-
ting antennas, minimization of the number of used frequesatc. Two points
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can communicate if they are covered by (i.e. can communieiitg an antenna.
Notice that communication networks, use such high frequeanges that side
effects of reflection and refraction become important untbg two points are
mutually visible (on a straight line segment). Thus a straigne of sight ap-
proach models reality with sufficient precision. The welblum problem is how
to place stations so that all points are covered (visibld)tae number of stations
is minimum. A variation is: a number of stations is given, avel are asked to
cover as many points as possible. Whether communicatiomelest two points
is possible or blocked it depends on the area topology. Smthdel must keep
the properties of the topology. Graphs, terrains, polygaitis (without) holes,
etc, have been used as models. In general topologies mdstsd problems are
NP-hard and many of them are APX-hard or even worse. In a nesticted
model we can usually do better. Such an example is a visilgitiaph: its vertex
set is the vertex set of a polygon and two vertices share aa iffdhey are mu-
tually visible in the polygon. Recognition of a visibilityrgph is in PSPACE [4].
The visibility graph is an interesting representation mdmeause a number of
visibility problems for polygons correspond to graph pembk (e.g. a maximum
convex subpolygof of a polygonP with vertex seV/ (C) C V(P), corresponds
to a maximum clique in the visibility graph d®?). There are problems that in
visibility graphs are easier than in general graphs (e.gimmam clique). An-
other example of a restricted model is a polygon with holé points that must
be covered lie in general on the boundary of the polygon anitsdfoles. On
the other hand the covering stations may be vertices or wdddes of the poly-
gon. Thus, covering stations may be placed in the interidh@folygon, i.e. on
vertices or edges of holes. A polygon with holes is a quiteegaiintopology. In
fact, for every graph we can easily construct a polygon wiles in which two
vertices are mutually visible iff they share an edge in threpbr We study a num-
ber of visibility problems for polygons with (without) hae(Visibility problems
are sometimes known as art gallery problems [2, 5, 6].) Satsad problems
that have been studied:IMMuM VERTEX/EDGE/POINT GUARD for polygons
with (without) holes (known to be APX-hard and O(lggapproximable [1, 7, 8]),
MINIMUM FIXED HEIGHT VERTEX/POINT GUARD ON TERRAIN (best approx-
imation possiblé(logn) [7, 8, 10]), MAXIMUM WEIGHTED CLIQUE ON VISI-
BILITY GRAPH (known to be inP [13, 14, 15]), MNIMUM CLIQUE PARTITION
ON VisIBILITY GRAPH for polygons without holes (known to be APX-hard and
O(logn) approximable [7]). More specifically, we study: a) the dewb of finding

k cliques in the visibility graph of a polygon without holestbat the total weight
of the clique vertices is maximum (MKIMUM WEIGHT IN k CLIQUES), b) the
following families of problems: given a number of availalitrtex (edge) guards:
i) cover a maximum portion of the boundary of a polygon withtfwut) holes
(MAXIMUM LENGTHVERTEX/EDGE GUARD), ii) watch (cover) a maximum to-
tal value of valuable portions of the boundary of a polygothwivithout) holes
(MAXIMUM VALUE VERTEX/EDGE GUARD). We prove that all of the above
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are NP-hard. We give for all of them polynomial time approation algorithms
achieving constant ratios, based on a well known greedyighgowhich approxi-
mates the MxiIMuM COVERAGE problem. Finally we prove that the AkKiIMUM
WEIGHT IN k CLIQUES and MAXIMUM VALUE VERTEX/EDGE GUARD do not
admit a FPTAS unless P=NP (i.e. ifANP).

Notation and Preliminaries

Definition 1 Let P be a polygon with (without) holes, ¥ (vg,v1,...,Vn_1) its
vertices, E= (ep,e1,...,en_1) its edges and(P) its boundary. Let &b € P, be
points and LM C P sets of points. We define the following predicates:

1. seefa,b): the straight line segment connecting a and b lies (everygjhe
inside P. Note that: seéa b) < seesb,a).

2. oversegdV,L): Vae L 3be M : seega,b). We say that L isisible from M
or that M coversL. Note that overseéhl, L) is not symmetric.

3. watchefM,L): Ja€ L 3b € M : see$a, b). Note that watched/, L) is sym-
metric.

Definition 2 Let P be a polygon with (without) holes. The problem (bougdear
stricted)MINIMUM VERTEX/EDGE GUARD is the problem of finding a minimum
subset S of vertices (edges) of P such &tB)} is visible from Soversee&S,d(P))].
The vertices (edges) in S are called Vertex (respectivajg)e@uards.

Our approximation algorithms are based on the followingl Wwebwn NP-
hard problem:

Definition 3 Given is a universe set U with weighted elements, an integefk
and a collection C of subsets of U. Teaximum COVERAGE problem asks for
k sets ¢ C s.t.lJS has maximum total weight.

Algorithm 1 MaxCoverage (* greedy *)
SOL—0
fori=1tokdo
selectS € C that maximizesieight(SOLUS)
SOL— SOLUS
end for
return Weight(SOL

Theorem 1 [16, 17, 18, 12] Algorithm 1 runs in polynomial time and apxyiro
mates theM AXIMuM COVERAGE problem achieving ®.632~ 1 — —é [actually

1—(1—$)¥] ratio.
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2 TheMAXIMUM WEIGHT IN k CLIQUES problem

Given is a polygorP without holes, with weights on its vertices and an integer
k > 0. We are asked fok convex subpolygon€; of P (possibly overlapping)
with VV(C;) C V(P) so that the weight of the vertices is a maximum. Although this
problem is of great theoretical interest, here is an apiinan wireless commu-
nication networks: Given is a number of villages with thedpplations, modelled
as weighted vertices of a simple polygon without holes. Véeaaked to design at
mostk wireless communication networks, so that a maximum numbpeople
can communicate and all villages in the same network can amgate directly
and not through a station. In the abstract version, instéadgolygon, a graph is
given along with a polynomial time checkable proof that tifaph is the visibility
graph of some polygoR (e.g. the polygorr itself).

Definition 4 Given is a polygon P without holes, with weights on its vediand
an integer k> 0. The goal of theMaxiMum WEIGHT IN k CLIQUES problem is
to find up to k cliques in the visibility graph of P, so that theight of covered
vertices is maximum.

There is a number of related problems that have been studied:

Definition 5 Given is a polygon P without holes. The goal of thleNiMuMm
CoNvEX DeEcomPoOsSITION problem is to partition the polygon to a minimum
number of non-overlapping convex polygons.

It is known [19, 20] that the M\iMmumMm CONVEX DECOMPOSITIONproblem
can be solved in polynomial time.

Definition 6 Given is a polygon P without holes. The goal of tleNiMuM
CoNvEX COVER problem is to cover the polygon using a minimum number of
(possibly overlapping) convex polygons that lie inside P.

Itis known [7] that the MNIMUM CONVEX COVER problem is APX-hard. A
logarithmic approximation algorithm is also known [7] ftiig problem.

We used the following problem to establish NP-hardnesstdiopooblem:

Definition 7 Given is a polygon P without holes. The goal of teNiMUM
CLIQUE PARTITION ON VISIBILITY GRAPH problem is to partition the visibility
graph of P to a minimum number of cliques.

The MINIMUM CLIQUE PARTITION ON VISIBILITY GRAPH problemis APX-
hard [7]. A logarithmic approximation algorithm exists fitye problem.

One can easily see that the decision version of theiMuM CLIQUE PAR-
TITION ON VISIBILITY GRAPH problem Karp-reduces to the decision version of
MAXIMUM WEIGHT IN k CLIQUES. Thus:
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Fact 1 MAXiIMUM WEIGHT IN k CLIQUES is NP-hard.
In our approximation algorithm we will use the following fxlem:

Definition 8 Given is a polygon P without holes, with weights on its vericThe
goal of theM AXIMUM WEIGHTED CLIQUE ON VISIBILITY GRAPH problem is
to find a maximum weight clique on the visibility graph of gy P.

The MAXIMUM WEIGHTED CLIQUE ON VISIBILITY GRAPH problemis in
P [13, 14, 15]. An algorithm that solves AkKIMUM WEIGHTED CLIQUE ON
VISIBILITY GRAPH in O(n®) has been described in [7].

Algorithm 2 MaximumWeightinkCliques (* greedy *)
SOL«+— 0; W5 +— W
fori=1tokdo
S «— MaxWeightedClique{g)
SOL«+ SOLUV(S)
W(V(S)) O
end for
return W(SOL

Proposition 1 Algorithm 2 runs in polynomial time and achieve®,®32 con-
stant approximation ratio of the optimum of thkeaxiMuM WEIGHT IN K CLIQUES
problem.

Proof. We find at each step the AKiMuM WEIGHTED CLIQUE ON VISIBILITY
GRAPH of the polygon, taking as weights the updated oné&gnThus, at each
iteration we take into the solution a set which causes a maxirimcrease to the
overall weight, similar to Algorithm 1. O

Theorem 2 MAXIMUM WEIGHT IN k CLIQUES does not admit a FPTAS, unless
P=NP.

Proof. Suppose there exists a FPTAS for the problem. We will showthzade-
cision version of MNIMUM CLIQUE PARTITION ON VISIBILITY GRAPH can be
decided in polynomial time and thus P=NP, because the decisirsion of MNI -
MUM CLIQUE PARTITION ON VISIBILITY GRAPH is known to be NP-complete.
So, we suppose there exists a polynomial time (w.r.t. injagt and w.r.t%) ap-
proximation algorithm that achieves an approximationorati 1 — ¢, Ve > 0.
Consider the decision version ofINNIMUM CLIQUE PARTITION ON VISIBIL-

ITY GRAPH of a polygon withn vertices. The question to be decided is whether
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the visibility graph can be partitioned into k cliques. For the (Karp) transfor-
mation to our problem we keep the same visibility graph, ardssign weight 1
to all vertices. We use the FPTAS with= % to find the maximum weight of ver-
tices that belong t& cliques. LetSOLbe the solution of the FPTAS a@PT an
optimal solution. Now MNIMUM CLIQUE PARTITION ON VISIBILITY GRAPH
can be decided, namely:

1. if SOL= nthenOPT = n, and thus the answer is “yes”.
2. if SOL< n—1then by the existence of a FPTAS:

(1— %)OPT = (1—€)OPT < SOL

and thus 1
(1- ﬁ)OPT <n-1,i.e. OPT<n,

and the answer is “no” (i.e. the graph cannot be partitionealk cliques).

Therefore we have an answer in any case for theiIMuM CLIQUE PARTITION
ON VISIBILITY GRAPH problem inPoly(n-+ ) = Poly(n) time. O

3 The MAXIMUM LENGTH VERTEX/EDGE GUARD
problem for polygons with (without) holes

Suppose a polygoR with (without) holes is given. We are asked to cover a max-
imum portion of the polygon’s boundary (possibly includingundaries of the
holes), using no more thanstations. We are allowed to use either only vertex
stations or only edge stations (occupying whole edges).

Definition 9 Given is a polygon P with (without) holes and an integes K.
Let L(b) be the euclidean length of the line segment b. The goal dfitheiMum
LENGTHVERTEX/EDGE GUARD problem is to place k vertex (edge) guards (sta-
tions) so that the euclidean length of that part of P’s boundhat is overseen
(covered) by the guards is maximum.

It is known that MNIMUM VERTEX/EDGE GUARD for polygons with (with-
out) holes is NP-hard [1] and that it admits polynomial tinp@eximation algo-
rithms which achieve Qogn) approximation ratios [10].

Furthermore itis provedin [8, 7] that MiMuUM VERTEX/EDGE GUARD for
polygons without holes is APX-hard. For polygons with holigss proved in
[9, 7] that no polynomial time approximation algorithm caragantee an approx-
imation ratio of 3£ Inn for anye > 0, unlessNP C TIME (n®(°8loan) ' Observ-
ing that the decision version of MiMuM VERTEX/EDGE GUARD for polygons
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with (without) holes Karp-reduces to the correspondingsiec version of Max -
IMUM LENGTH VERTEX/EDGE GUARD, for polygons with (without) holes, we
can easily generalize:

Fact2 MAXIMUM LENGTH VERTEX/EDGE GUARD for polygons with (with-
out) holes is NP-hard.

Algorithm 3 approximates the MXiIMUM LENGTH VERTEX/EDGE GUARD
problem for polygons with or without holes usifig(v) (or E’(e)) which is the
set of line segments on the boundary visible frelfor €). To construcg&’(v) (or
E’(e)), we use the visibility grapNg(P). By extending edges of(P) inside
P up to the boundary oP we obtain a set of pointV S of the boundary oP
(that includes of course all vertices) (see figure 1). Thez®©én?) points inFV S
(= finest visibility segmentation) and these points are eimdp of line segments
with the following property: for any poing € FV'S a segmenta,b) defined by
consecutive-V S pointsa, b is visible byy iff it is watched byy. Furthermore
(a,b) is visible by an edgeiff it is visible by any point inFV Sne. Thus we can
find the set of line segmeni (v) (E’(e))which are visible by a vertex(edgee)
within time O(n?) (O(n%)).

Algorithm 3 MaxLegthVertex/EdgeGuards (* greedy *)
SOL—0
fori=1tokdo
selectx € V (x € E) that maximized (SOLUE'(x))
SOL+ SOLUE'(x)
end for
return L(SOL

Proposition 2 Algorithm 3 runs in polynomial time and achieves a constaé82
approximation ratio of the optimum of thdAXIMUM LENGTH VERTEX/EDGE
GUARD problem.

Proof. As in Algorithm 2, at each iteration, a maximum increase ® ther-
all solution is achieved. Thus our polynomial time algamitlachieves a 632
approximation ratio. O

In [21] we prove that MXIMUM LENGTH VERTEX/EDGE GUARD for poly-
gons with or without holes is APX-hard. Furthermore, in [22¢ extend the def-
inition of the MAXIMUM LENGTH VERTEX/EDGE GUARD problem by allowing
guard (station) placement in the interior of the polygortwtite goal to cover a
maximum part of the interior area of the polygon. We give ¢tansapproximation
algorithms and prove APX-hardness.
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Figure 1: Subdividing the boundary into line segments wittpoints inFV S

4 TheMAXIMUM VALUE VERTEX/EDGE GUARD prob-
lem

Suppose a polygoR with (without) holes is given with weighted disjoint line
segments on its boundary (including boundaries of the pleshibles). Our line
segments are open intervdks b). A possible interpretation of line segments is
disjoint districts. Weights may be interpreted as popatatiumbers. Another in-
terpretation for line segments is paintings in an art galdfeights may be inter-
preted as cost values. We are asked to cover a maximum wedgig no more
thank stations. As before, we have two versions w.r.t the typeatimsts: a) vertex
stations or b) edge stations.

Definition 10 Given is a polygon P with (without) holes and an integes K.
Assume the boundary of P is subdivided into disjoint liners=gs with non neg-
ative weights (see figure 2). The goal of fexiMmum VALUE VERTEX/EDGE
GUARD problem is to place k vertex (edge) guards (e.g. station#)aothe total
weight of the set of line segments watched (overseen) ismmaxi

Proposition 3 MAXIMUM VALUE VERTEX/EDGE GUARD, for polygons with
(without) holes is NP-hard.

Proof. The decision version of MiiMumM VERTEX/EDGE GUARD for a poly-
gonP with (without) holes Karp-reduces to the correspondingsiec version of
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Figure 2: A weighted polygon

MaAaxiMUM VALUE VERTEX/EDGE GUARD for the same polygoR with (with-
out) holes. We construct tHeV S i.e. the finest line segment subdivision of the
edges oP by usingE’(vi) (E'(g)) of the previous section for alf (g). Each edge

is subdivided into non overlapping segments (see figureviBryesegment ok’

is thuswatchediff it is visible by a vertex (edge). We assign weight 1 to every
segment. LeT be the total weight (note that every piece of the boundarysis v
ble by some vertex (edge)). Thus the original polygon bomnidk-guardable iff
the new weighted polygon lswatched (-visible) with total weight. O

Algorithm 4 approximates the MxIMUM VALUE VERTEX/EDGE GUARD
problem for polygons with or without holes: For the case atex (edge) watch-
ing guards for polygons with (without) holes , it is easy técatate at each iter-
ation the set of segmen&v) (S(e)) which are watched by (€). For the case of
vertex (edge) overseeing guards for polygons with (withbotes , we calculate
E’(v) (E'(e)) for every vertex (edge) and then we calculate the total tesgline
segments to be included BOLUE'(v)(E’(e)).

Proposition 4 Algorithm 4 runs in polynomial time and achieve9.8&32 con-
stant approximation ratio of the optimum of thleaxiIMuM VALUE VERTEX/EDGE
GUARD problem.

Proof. As in Algorithm 3, at each iteration, a maximum increase ® ther-
all solution is achieved. Thus our polynomial time algamitlachieves a 632
approximation ratio. O
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Algorithm 4 MaxValueVertex/EdgeGuards (* greedy *)
SOL+— 0
fori=1tokdo
selectx € V (x € E) that maximize$leight(SOLU S(x)(orE’(x))
SOL«+ SOLU §(x)(orE’'(x))
end for
return Weight(SOL

Theorem 3 MAXIMUM VALUE VERTEX/EDGE GUARD for polygons with (with-
out) holes does not admit a FPTAS, unless RP.

Proof. Suppose there exists a FPTAS for the problem. We will showttie
decision version of MNiMuM VERTEX/EDGE GUARD can be decided in poly-
nomial time and thus P=NP, because the decision versionigiMlmM VER-
TEX/EDGE GUARD is known to be NP-complete. So, we suppose there exists
a polynomial time (w.r.t. input size and w.r%) approximation algorithm that
achieves an approximation ratio of-le, Ve > 0. Consider the decision version
of MINIMUM VERTEX/EDGE GUARD of a polygonP with n vertices. The ques-
tion to be decided is wheth& can be guarded using k guards. For the (Karp)
transformation to our problem we keep the same polygon, andssign weight
1 to all segments. Le¥l = [FVS. We use the FPTAS with = % to find a seg-
ment set with maximum weight that can be watched or oversgd&rgbards. Let
SOLbe the solution of the FPTAS ai@PT an optimal solution. Now MNIMUM
VERTEX/EDGE GUARD can be decided, namely:

1. if SOL= M thenOPT = M, and thus the answer is “yes”.
2. if SOL< M — 1 then by the existence of a FPTAS:

(1- %)OPT = (1-€)OPT < SOL

and thus 1
(1- M)OPT< M—1, i.e. OPT < M,

and the answer is “no” (i.&2 cannot be guarded usingk guards).

Therefore we have an answer in any case for thellMum VERTEX/EDGE
GUARD problem inPoly(n+ ) = Poly(n) time. O

We prove in [21] that watching or overseeing cases of thexMiUM VALUE
VERTEX/EDGE GUARD problem for polygons with or without holes are APX-
hard. Furthermore, in [22], we extend the definition oA¥MMUM VALUE VER-
TEX/EDGE GUARD by allowing guards to be placed in the interior of the polygon
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We also extend the intended guarded area to the interioegidlygon (i.e. cov-
ering maximum valuable parts of the interior). We give cans@pproximation
algorithms and prove APX-hardness.

5 Conclusion

We investigated the following problems: 1)AMIMUM WEIGHT IN k CLIQUES
for visibility graphs of polygons without holes, 2) AKiMuM LENGTHVERTEX
GUARD for polygons without holes, 3) MxiMuM LENGTHVERTEX GUARD for
polygons with holes, 4) MxiMUuM LENGTHEDGE GUARD for polygons without
holes, 5) MaxIMuUM LENGTH EDGE GUARD for polygons with holes, 6) watch-
ing MAXxiIMuM VALUE VERTEX GUARD for polygons without holes, 7) watching
MaxiMuM VALUE VERTEX GUARD for polygons with holes, 8) watching M -
IMUM VALUE EDGE GUARD for polygons without holes, 9) watching AXi -
MUM VALUE EDGE GUARD for polygons with holes, 10) overseeingsdiMum
VALUE VERTEX GUARD for polygons without holes, 11) overseeingaAMiMUM
VALUE VERTEX GUARD for polygons with holes, 12) overseeingAMiMUM
VALUE EDGE GUARD for polygons without holes, 13) overseeingAMiMum
VALUE EDGE GUARD for polygons with holes. We proved NP-hardness and we
found polynomial time approximation algorithms with ccart ratio for all of
them using the greedy technique that approximates th&IMum COVERAGE
problem. We also proved that most of them do not admit a FPTARsE = NP.
While investigating the above problems we introducedvajghts or values on
pieces of the polygon’s boundary, b) the useful and promgisoncept ofvatch-
ing a set of points or line segments as opposed to completelsseeingor cov-
ering it, and c¢) a way to discretize the boundary of the potylgw subdividing it
into O(n?) pieces of thé=V S=finest visibility segmentation which is the finest
relevant segmentation w.r.t. any geometrical considamaiurthermore theV S
satisfies the following interesting propertyE¥ Sline segmenta,b) is watched
by aFV Spointy iff (a,b) is visible byy.

We extend our results in [22] for all these problems, by idtrcing costs
on candidate station places (vertices, edges or interioitgoand a budgeB.
The goal is to maximize the value of the guarded places bytiposig guards
that cost totally at modB. We give constant approximation algorithms and prove
APX-hardness.
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